Do you want to publish a course? Click here

All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules

199   0   0.0 ( 0 )
 Added by Florian Schreck
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the essential experimental steps of our all-optical approach to prepare a double-degenerate Fermi-Fermi mixture of 6Li and 40K atoms, which then serves as a starting point for molecule formation. We first describe the optimized trap loading procedures, the internal-state preparation of the sample, and the combined evaporative and sympathetic cooling process. We then discuss the preparation of the sample near an interspecies Feshbach resonance, and we demonstrate the formation of heteronuclear molecules by a magnetic field ramp across the resonance.



rate research

Read More

We study the widths of interspecies Feshbach resonances in a mixture of the fermionic quantum gases 6Li and 40K. We develop a model to calculate the width and position of all available Feshbach resonances for a system. Using the model we select the optimal resonance to study the 6Li/40K mixture. Experimentally, we obtain the asymmetric Fano lineshape of the interspecies elastic cross section by measuring the distillation rate of 6Li atoms from a potassium-rich 6Li/40K mixture as a function of magnetic field. This provides us with the first experimental determination of the width of a resonance in this mixture, Delta B=1.5(5) G. Our results offer good perspectives for the observation of universal crossover physics using this mass-imbalanced fermionic mixture.
We report the first all-optical production of a superfluid Bose-Fermi mixture with two spin states of $^6$Li (fermion) and one spin state of $^7$Li (boson) under the resonant magnetic field of the s-wave Feshbach resonance of the fermions. Fermions are cooled efficiently by evaporative cooling and they serve as coolant for bosons. As a result, a superfluid mixture can be achieved by using a simple experimental apparatus and procedures, as in the case of the all-optical production of a single Bose-Einstein condensate (BEC). We show that the all-optical method enables us to realize variety of ultracold Bose-Fermi mixtures.
We present a detailed theoretical and experimental study of Feshbach resonances in the 6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which have not been considered before. As an important example, we thoroughly investigate both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our theoretical predictions based on a coupled channels calculation are found in excellent agreement with the experimental results. We also present theoretical results on the molecular state that underlies the 155G resonance, in particular concerning its lifetime against spontaneous dissociation. We then present a survey of resonances in the system, fully characterizing the corresponding elastic and inelastic scattering properties. This provides the essential information to identify optimum resonances for applications relying on interaction control in this Fermi-Fermi mixture.
180 - Armin Ridinger 2011
We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2x10^9 6Li-atoms and 8.0x10^9 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2x10^9 6Li-atoms/s and 1.4x10^9 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ~65% were observed and could be minimized to ~10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture.
We investigate the collisional stability of a sample of 40K atoms immersed in a tunable spin mixture of 6Li atoms. In this three-component Fermi-Fermi mixture, we find very low loss rates in a wide range of interactions as long as molecule formation of 6Li is avoided. The stable fermionic mixture with two resonantly interacting spin states of one species together with another species is a promising system for a broad variety of phenomena in few- and many-body quantum physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا