Do you want to publish a course? Click here

The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548

114   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of X-ray high quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra HETGS and LETGS observations for a total exposure time of 800ks. The continuum emission is well represented by a powerlaw plus a black-body component. We find that the well known X-ray warm absorber in this source consists of two different outflow velocity systems. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high velocity system consists of a component with temperature of 2.7X10^6K and another component with temperature of 5.8X10^5K. The low-velocity system required also two absorbing components, one with temperature of 5.8X10^5K; the other with lower temperature (3.5X10^4K). Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that different outflow velocity systems have been modelled independently in the X-ray band for this source. The kinematic components and column densities found from the X-rays are in agreement with the main kinematic components found in the UV absorber. This supports the idea that the UV and X-ray absorbing gas is part of the same phenomenon. NGC 5548 can now be seen to fit in a pattern established for other warm absorbers: 2 or 3 discrete phases in pressure equilibrium. There are no remaining cases of a well studied warm absorber in which a model consisting of a multi-phase medium is not viable.



rate research

Read More

The narrow [O III] 4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow line-emitting region has a radius of only 1-3 pc and is denser (n ~ 10^5 cm^{-3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass.Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hbeta emission-line light curves for the period 1988 to 2008.
299 - J. Ebrero , V. Domcek (2 , 3 2021
(Abridged) NGC 985 was observed by XMM-Newton twice in 2015, revealing that the source was coming out from a soft X-ray obscuration event that took place in 2013. These kinds of events are possibly recurrent since a previous XMM-Newton archival observation in 2003 also showed signatures of partial obscuration. We have analyzed the high-resolution X-ray spectra of NGC 985 obtained by the RGS in 2003, 2013, and 2015 in order to characterize the ionized absorbers superimposed to the continuum and to study their response as the ionizing flux varies. We found that up to four warm absorber (WA) components were present in the grating spectra of NGC 985, plus a mildy ionized (log xi ranging between 0.2 and 0.5) obscuring (log N(H) of about 22.3) wind outflowing at about 6000 km/s. The absorbers have a log N(H) ranging from 21 to about 22.5, and ionization parameters ranging from 1.6 to 2.9. The most ionized component is also the fastest, moving away at 5100 km/s, while the others outflow in two kinematic regimes, at about 600 and 350 km/s. These components showed variability at different time scales in response to changes in the ionizing continuum. Assuming that these changes are due to photoionization we have obtained upper and lower limits on the density of the gas and therefore on its distance, finding that the closest two components are at pc-scale distances, while the rest may extend up to tens of pc from the central source. The fastest, most ionized WA component accounts for the bulk of the kinetic luminosity injected back into the ISM of the host galaxy, which is on the order of 0.8% of the bolometric luminosity of NGC 985. According to the models, this amount of kinetic energy per unit time would be sufficient to account for cosmic feedback.
We present the results from a 500 ks Chandra observation of the Seyfert 1 galaxy NGC 5548. We detect broadened emission lines of O VII and C VI in the spectra, similar to those observed in the optical and UV bands. The source was continuously variable, with a 30 % increase in luminosity in the second half of the observation. No variability in the warm absorber was detected between the spectra from the first 170 ks and the second part of the observation. The velocity structure of the X-ray absorber is consistent with the velocity structure measured simultaneously in the ultraviolet spectra. We find that the highest velocity outflow component, at -1040 km/s, becomes increasingly important for higher ionization parameters. This velocity component spans at least three orders of magnitude in ionization parameter, producing both highly ionized X-ray absorption lines (Mg XII, Si XIV) as well as UV absorption lines. A similar conclusion is very probable for the other four velocity components. Based upon our observations, we argue that the warm absorber probably does not manifest itself in the form of photoionized clumps in pressure equilibrium with a surrounding wind. Instead, a model with a continuous distribution of column density versus ionization parameter gives an excellent fit to our data. From the shape of this distribution and the assumption that the mass loss through the wind should be smaller than the accretion rate onto the black hole, we derive upper limits to the solid angle as small as 10^{-4} sr. From this we argue that the outflow occurs in density-stratified streamers. The density stratification across the stream then produces the wide range of ionization parameter observed in this source. Abridged.
We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.
We present the results of the analysis of the X-ray spectrum of the Seyfert 2 Mrk 348, observed by Suzaku and XMM-Newton. The overall spectrum of Mrk 348 can be described by a primary power law continuum seen through three layers of absorption, of which one is neutral and two are ionised. Comparing Suzaku (2008) and XMM-Newton (2002) observations we find variability of the X-ray spectral curvature. We suggest that the variability can be explained through the change of column density of both the neutral and one of the ionised absorbers, together with a variation of the ionisation level of the same absorber. We thus confirm one of the main features presented in past works, where intrinsic column density variability up to $sim 10^{23}$~cm$^{-2}$ was observed on time scales of months. We also find that the photon index of the underlying power law continuum ($Gamma sim 1.8$) is in agreement with the previous observations of this Seyfert 2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا