Do you want to publish a course? Click here

A chain of strongly correlated SU(2)_4 anyons: Hamiltonian and Hilbert space of states

111   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

One-dimensional lattice model of SU(2)_{4} anyons containing a transition into the topological ordered phase state is considered. An effective low-energy Hamiltonian is found for half-integer and integer indices of the type of strongly correlated non-Abelian anyons. The Hilbert state space properties in the considered modular tensor category are studied.



rate research

Read More

A powerful perspective in understanding non-equilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, not much else is known about the refined characters of entanglement propagation. Here, we unveil signatures of the entanglement evolving and information propagation out-of-equilibrium, from the view of entanglement Hamiltonian. As a prototypical example, we study quantum quench dynamics of a one-dimensional Bose-Hubbard model by means of time-dependent density-matrix renormalization group simulation. Before reaching equilibration, it is found that a current operator emerges in entanglement Hamiltonian, implying that entanglement spreading is carried by particle flow. In the long-time limit subsystem enters a steady phase, evidenced by the dynamic convergence of the entanglement Hamiltonian to the expectation of a thermal ensemble. Importantly, entanglement temperature of steady state is spatially independent, which provides an intuitive trait of equilibrium. We demonstrate that these features are consistent with predictions from conformal field theory. These findings not only provide crucial information on how equilibrium statistical mechanics emerges in many-body dynamics, but also add a tool to exploring quantum dynamics from perspective of entanglement Hamiltonian.
We consider the braid group representation which describes the non-abelian braiding statistics of the spin 1/2 particle world lines of an SU(2)$_4$ Chern-Simons theory. Up to an abelian phase, this is the same as the non-Abelian statistics of the elementary quasiparticles of the $k=4$ Read-Rezayi quantum Hall state. We show that these braiding statistics are identical to those of Z$_3$ Parafermions.
173 - Igor Lesanovsky 2011
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the excitation gap as well as the exact wave functions for a couple of excited states are analytically derived and discussed.
The discovery of Quantum Many-Body Scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physics. In this review, we provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems with the help of simple examples such as the fermionic Hubbard model. We also discuss various mechanisms and unifying formalisms that have been proposed to encompass the plethora of systems exhibiting QMBS. We cover examples of equally-spaced towers that lead to exact revivals for particular initial states, as well as isolated examples of QMBS. Finally, we review Hilbert Space Fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors, and discuss its connections to QMBS.
We study one-dimensional spin-1/2 models in which strict confinement of Ising domain walls leads to the fragmentation of Hilbert space into exponentially many disconnected subspaces. Whereas most previous works emphasize dipole moment conservation as an essential ingredient for such fragmentation, we instead require two commuting U(1) conserved quantities associated with the total domain-wall number and the total magnetization. The latter arises naturally from the confinement of domain walls. Remarkably, while some connected components of the Hilbert space thermalize, others are integrable by Bethe ansatz. We further demonstrate how this Hilbert-space fragmentation pattern arises perturbatively in the confining limit of $mathbb{Z}_2$ gauge theory coupled to fermionic matter, leading to a hierarchy of time scales for motion of the fermions. This model can be realized experimentally in two complementary settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا