The position and strength of the boson peak in silica glass vary considerably with temperature $T$. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin scattering measurements are presented which allow determining the $T$-dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with $T$ and to set the energy scale for the soft potentials.