Do you want to publish a course? Click here

A new scattering mechanism of acoustic phonons in relaxor ferroelectrics: the case of KTa_{1-x}Nb_xO_3

111   0   0.0 ( 0 )
 Added by Jean Toulouse
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The complex interaction between transverse acoustic (TA) phonon, transverse optic (TO) phonon and polar nano-domains (PND) in the relaxor ferroelectric KTa1-xNbxO3 (KTN) is studied by means of high resolution diffuse and inelastic neutron scattering. The experimental results and a comparison with lead relaxors, suggest a new scattering mechanism of the TA phonon by localized modes in PNDs. A theoretical model is developed, which accurately predicts the evolution of the TA damping with temperature and wavevector. Such a mechanism suggests the possible use of high frequency acoustic modes for the study of nanocomposite materials.



rate research

Read More

We analyze the band topology of acoustic phonons in 2D materials by considering the interplay of spatial and internal symmetries with additional constraints that arise from the physical context. These supplemental constraints trace back to the Nambu-Goldstone theorem and the requirements of structural stability. We show that this interplay can give rise to previously unaddressed non-trivial nodal charges that are associated with the crossing of the acoustic phonon branches at the center ($Gamma$-point) of the phononic Brillouin zone. We moreover apply our perspective to the concrete context of graphene, where we demonstrate that the phonon spectrum harbors these kinds of non-trivial nodal charges. Apart from its fundamental appeal, this analysis is physically consequential and dictates how the phonon dispersion is affected when graphene is grown on a substrate. Given the generality of our framework, we anticipate that our strategy that thrives on combining physical context with insights from topology should be widely applicable in characterizing systems beyond electronic band theory.
441 - G. Arregui , O. Ortiz , M. Esmann 2018
Inspired by concepts developed for fermionic systems in the framework of condensed matter physics, topology and topological states are recently being explored also in bosonic systems. The possibility of engineering systems with unidirectional wave propagation and protected against disorder is at the heart of this growing interest. Topogical acoustic effects have been observed in a variety of systems, most of them based on kHz-MHz sound waves, with typical wavelength of the order of the centimeter. Recently, some of these concepts have been successfully transferred to acoustic phonons in nanoscaled multilayered systems. The reported demonstration of confined topological phononic modes was based on Raman scattering spectroscopy, yet the resolution did not suffice to determine lifetimes and to identify other acoustic modes in the system. Here, we use time-resolved pump-probe measurements using an asynchronous optical sampling (ASOPS) technique to overcome these resolution limitations. By means of one-dimensional GaAs/AlAs distributed Bragg reflectors (DBRs) as building blocks, we engineer high frequency ($sim$ 200 GHz) topological acoustic interface states. We are able to clearly distinguish confined topological states from stationary band edge modes. The detection scheme reflects the symmetry of the modes directly through the selection rules, evidencing the topological nature of the measured confined state. These experiments enable a new tool in the study of the more complex topology-driven phonon dynamics such as phonon nonlinearities and optomechanical systems with simultaneous confinement of light and sound.
We study the free energy landscape of a minimal model for relaxor ferroelectrics. Using a variational method which includes leading correlations beyond the mean-field approximation as well as disorder averaging at the level of a simple replica theory, we find metastable paraelectric states with a stability region that extends to zero temperature. The free energy of such states exhibits an essential singularity for weak compositional disorder pointing to their necessary occurrence. Ferroelectric states appear as local minima in the free energy at high temperatures and become stable below a coexistence temperature $T_c$. We calculate the phase diagram in the electric field-temperature plane and find a coexistence line of the polar and non-polar phases which ends at a critical point. First-order phase transitions are induced for fields sufficiently large to cross the region of stability of the metastable paraelectric phase. These polar and non-polar states have distinct structure factors from those of conventional ferroelectrics. We use this theoretical framework to compare and to gain physical understanding of various experimental results in typical relaxors.
We performed infrared transmission experiment on ion-gel gated graphene and measured carrier scattering rate g as function of carrier density n over wide range up to n=2E13 cm-2. The g exhibits a rapid decreases along with the gating followed by persistent increases on further carrier doping. This behavior of g(n) demonstrates that carrier is scattered dominantly by the two scattering mechanisms, namely, charged impurity (CI) scattering and short-range disorder (SR) scattering, with additional minor scattering from substrate phonon (SPP). We can determine the absolute strengths of all the scattering channels by fitting the g(n) data and unveils the complete n-dependent map of the scattering mechanisms g(n)=gCI(n)+gSR(n)+gSPP(n). The gCI(n) and gSR(n) are larger than those of SiO2$-gated graphene by 1.8 times, which elucidates the dual role of the ion-gel layer as a CI-scatterer and simultaneously a SR-scatterer to graphene. Additionally we show that freezing of IG at low-T (~200 K) does not cause any change to the carrier scattering.
Topological semimetal, hosting spin-1 Weyl point beyond Dirac and Weyl points, has attracted a great deal of attention. However, the spin-1 Weyl semimetal, which possesses exclusively the spin-1 Weyl points in a clean frequency window, without shadowed by any other nodal points, is yet to be discovered. Here, we report for the first time a spin-1 Weyl semimetal in a phononic crystal. Its spin-1 Weyl points, touched by two linear dispersions and an additional flat band, carry monopole charges (-2,0,2) or (2,0,-2) for the three bands from bottom to top, and result in double Fermi arcs existing both between the 1st and 2nd bands, as well as between the 2nd and 3rd bands. We further observe robust propagation against the multiple joints and topological negative refraction of acoustic surface arc wave. Our results pave the way to explore on the macroscopic scale the exotic properties of the spin-1 Weyl physics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا