Do you want to publish a course? Click here

On the extreme positive star-formation feedback condition in SCUBA sources

173   0   0.0 ( 0 )
 Added by Richard Wunsch
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed study of the hydrodynamics of the matter reinserted by massive stars via stellar winds and supernovae explosions in young assembling galaxies. We show that the interplay between the thermalization of the kinetic energy provided by massive stars, radiative cooling of the thermalized plasma and the gravitational pull of the host galaxy, lead to three different hydrodynamic regimes. These are: a) The quasi-adiabatic supergalactic winds. b) The bimodal flows, with mass accumulation in the central zones and gas expulsion from the outer zones of the assembling galaxy. c) The gravitationally bound regime, for which all of the gas returned by massive stars remains bound to the host galaxy and is likely to be reprocessed into futher generations of stars. Which of the three possible solutions takes place, depends on the mass of the star forming region its mechanical luminosity (or star formation rate) and its size. The model predicts that massive assembling galaxies with large star formation rates similar to those detected in SCUBA sources ($sim 1000$ M$_odot$ yr$^{-1}$) are likely to evolve in a positive star-formation feedback condition, either in the bimodal, or in the gravitationally bound regime. This implies that star formation in these sources may have little impact on the intergalactic medium and result instead into a fast interstellar matter enrichment, as observed in high redshift quasars.



rate research

Read More

72 - L. Ciotti 2015
AGN feedback from supermassive black holes (SMBHs) at the center of early type galaxies is commonly invoked as the explanation for the quenching of star formation in these systems. The situation is complicated by the significant amount of mass injected in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to SMBHs two orders of magnitude more massive than observed. By using high-resolution 2D hydrodynamical simulations with radiative transport and star formation in state-of-the-art galaxy models, we show how the intermittent AGN feedback is highly structured on spatial and temporal scales, and how its effects are not only negative (shutting down the recurrent cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.
We present new, spatially resolved [CI]1-0, [CI]2-1, CO(7-6), and dust continuum observations of 4C 41.17 at $z=3.8$ obtained with the IRAM NOEMA interferometer. This is one of the best-studied radio galaxies in this epoch and is arguably the best candidate of jet-triggered star formation at high redshift currently known in the literature. 4C 41.17 shows a narrow ridge of dust continuum extending over 15 kpc near the radio jet axis. Line emission is found within the galaxy in the region with signatures of positive feedback. Using the [CI]1-0 line as a molecular gas tracer, and multifrequency observations of the far-infrared dust heated by star formation, we find a total gas mass of $7.6times 10^{10}$ M$_{odot}$, which is somewhat greater than that previously found from CO(4-3). The gas mass surface density of $10^3$ M$_{odot}$ yr$^{-1}$ pc$^{-2}$ and the star formation rate surface density of 10 M$_{odot}$ yr$^{-1}$ kpc$^{-2}$ were derived over the 12 kpc$times$8 kpc area, where signatures of positive feedback have previously been found. These densities are comparable to those in other populations of massive, dusty star-forming galaxies in this redshift range, suggesting that the jet does not currently enhance the efficiency with which stars form from the gas. This is consistent with expectations from simulations, whereby radio jets may facilitate the onset of star formation in galaxies without boosting its efficiency over longer timescales, in particular after the jet has broken out of the interstellar medium, as is the case in 4C 41.17.
164 - Gerhard Hensler 2010
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the complexity of investigations aiming at understanding the interchange between supernovae and their released hot gas with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and apply multiple recipes of these parameters, only a representative selection of studies can be discussed here.
We present a new exploration of the cosmic star-formation history and dust obscuration in massive galaxies at redshifts $0.5< z<6$. We utilize the deepest 450 and 850$mu$m imaging from SCUBA-2 CLS, covering 230arcmin$^2$ in the AEGIS, COSMOS and UDS fields, together with 100-250$mu$m imaging from Herschel. We demonstrate the capability of the T-PHOT deconfusion code to reach below the confusion limit, using multi-wavelength prior catalogues from CANDELS/3D-HST. By combining IR and UV data, we measure the relationship between total star-formation rate (SFR) and stellar mass up to $zsim5$, indicating that UV-derived dust corrections underestimate the SFR in massive galaxies. We investigate the relationship between obscuration and the UV slope (the IRX-$beta$ relation) in our sample, which is similar to that of low-redshift starburst galaxies, although it deviates at high stellar masses. Our data provide new measurements of the total SFR density (SFRD) in $M_ast>10^{10}M_odot$ galaxies at $0.5<z<6$. This is dominated by obscured star formation by a factor of $>10$. One third of this is accounted for by 450$mu$m-detected sources, while one fifth is attributed to UV-luminous sources (brighter than $L^ast_{UV}$), although even these are largely obscured. By extrapolating our results to include all stellar masses, we estimate a total SFRD that is in good agreement with previous results from IR and UV data at $zlesssim3$, and from UV-only data at $zsim5$. The cosmic star-formation history undergoes a transition at $zsim3-4$, as predominantly unobscured growth in the early Universe is overtaken by obscured star formation, driven by the build-up of the most massive galaxies during the peak of cosmic assembly.
Aims. We investigate the effects of ionising photons on accretion and stellar mass growth in a young star forming region, using a Monte Carlo radiation transfer code coupled to a smoothed particle hydrodynamics (SPH) simulation. Methods. We introduce the framework with which we correct stellar cluster masses for the effects of photoionising (PI) feedback and compare to the results of a full ionisation hydrodynamics code. Results. We present results of our simulations of star formation in the spiral arm of a disk galaxy, including the effects of photoionising radiation from high mass stars. We find that PI feedback reduces the total mass accreted onto stellar clusters by approximately 23 per cent over the course of the simulation and reduces the number of high mass clusters, as well as the maximum mass attained by a stellar cluster. Mean star formation rates (SFRs) drop from 0.042 solar masses per year in our control run to 0.032 solar masses per year after the inclusion of PI feedback with a final instantaneous SFR reduction of 62 per cent. The overall cluster mass distribution appears to be affected little by PI feedback. Conclusions. We compare our results to the observed extra-galactic Schmidt-Kennicutt relation and the observed properties of local star forming regions in the Milky Way and find that internal photoionising (PI) feedback is unlikely to reduce star formation rates by more than a factor of approximately 2 and thus may play only a minor role in regulating star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا