Asymptotics for a special solution to the second member of the Painleve I hierarchy


Abstract in English

We study the asymptotic behavior of a special smooth solution y(x,t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x,t) if xto pminfty (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.

Download