Do you want to publish a course? Click here

Extracting high fidelity quantum computer hardware from random systems

113   0   0.0 ( 0 )
 Added by Andreas Walther
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra, Australia and Lund, Sweden, and the present description follows more closely the Lund work. Techniques will be described that include optimal filtering of the initially inhomogeneously broadened profile down to well separated and narrow ensembles, as well as the use of advanced pulse-shaping in order to achieve robust arbitrary single-qubit operations with fidelities above 90%, as characterized by quantum state tomography. It is expected that full scalability of these systems will require the ability to determine the state of single rare-earth ions. It has been proposed that this can be done using special readout ions doped into the crystal and an update is given on the work to find and characterize such ions. Finally, a few aspects on the possibilities for remote entanglement of ions in separate rare-earth-ion-doped crystals are considered.



rate research

Read More

As a wide variety of quantum computing platforms become available, methods for assessing and comparing the performance of these devices are of increasing interest and importance. Inspired by the success of single-qubit error rate computations for tracking the progress of gate-based quantum computers, this work proposes a Quantum Annealing Single-qubit Assessment (QASA) protocol for quantifying the performance of individual qubits in quantum annealing computers. The proposed protocol scales to large quantum annealers with thousands of qubits and provides unique insights into the distribution of qubit properties within a particular hardware device. The efficacy of the QASA protocol is demonstrated by analyzing the properties of a D-Wave 2000Q system, revealing unanticipated correlations in the qubit performance of that device. A study repeating the QASA protocol at different annealing times highlights how the method can be utilized to understand the impact of annealing parameters on qubit performance. Overall, the proposed QASA protocol provides a useful tool for assessing the performance of current and emerging quantum annealing devices.
The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. The ultimate goal in quantum control is to prepare a desired state with 100% fidelity. Here we experimentally implement optimal control schemes that achieve nearly perfect fidelity for a two-level quantum system realized with Bose-Einstein condensates in optical lattices. By suitably tailoring the time-dependence of the systems parameters, we transform an initial quantum state into a desired final state through a short-cut protocol reaching the maximum speed compatible with the laws of quantum mechanics. In the opposite limit we implement the recently proposed transitionless superadiabatic protocols, in which the system perfectly follows the instantaneous adiabatic ground state. We demonstrate that superadiabatic protocols are extremely robust against parameter variations, making them useful for practical applications.
In recent decades there has been a rapid development of methods to experimentally control individual quantum systems. A broad range of quantum control methods has been developed for two-level systems, however the complexity of multi-level quantum systems make the development of analogous control methods extremely challenging. Here, we exploit the equivalence between multi-level systems with SU(2) symmetry and spin-1/2 systems to develop a technique for generating new robust, high-fidelity, multi-level control methods. As a demonstration of this technique, we develop new adiabatic and composite multi-level quantum control methods and experimentally realise these methods using an $^{171}$Yb$^+$ ion system. We measure the average infidelity of the process in both cases to be around $10^{-4}$, demonstrating that this technique can be used to develop high-fidelity multi-level quantum control methods and can, for example, be applied to a wide range of quantum computing protocols including implementations below the fault-tolerant threshold in trapped ions.
The great promise of quantum computers comes with the dual challenges of building them and finding their useful applications. We argue that these two challenges should be considered together, by co-designing full-stack quantum computer systems along with their applications in order to hasten their development and potential for scientific discovery. In this context, we identify scientific and community needs, opportunities, a sampling of a few use case studies, and significant challenges for the development of quantum computers for science over the next 2--10 years. This document is written by a community of university, national laboratory, and industrial researchers in the field of Quantum Information Science and Technology, and is based on a summary from a U.S. National Science Foundation workshop on Quantum Computing held on October 21--22, 2019 in Alexandria, VA.
Performing efficient quantum computer tuneup and calibration is essential for growth in system complexity. In this work we explore the link between facilitating such capabilities and the underlying architecture of the physical hardware. We focus on the specific challenge of measuring (``mapping) spatially inhomogeneous quasi-static calibration errors using spectator qubits dedicated to the task of sensing and calibration. We introduce a novel architectural concept for such spectator qubits: arranging them spatially according to prescriptions from optimal 2D approximation theory. We show that this insight allows for efficient reconstruction of inhomogeneities in qubit calibration, focusing on the specific example of frequency errors which may arise from fabrication variances or ambient magnetic fields. Our results demonstrate that optimal interpolation techniques display near optimal error-scaling in cases where the measured characteristic (here the qubit frequency) varies smoothly, and we probe the limits of these benefits as a function of measurement uncertainty. For more complex spatial variations, we demonstrate that the NMQA formalism for adaptive measurement and noise filtering outperforms optimal interpolation techniques in isolation, and crucially, can be combined with insights from optimal interpolation theory to produce a general purpose protocol.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا