Do you want to publish a course? Click here

The extreme luminosity states of Sagittarius A*

81   0   0.0 ( 0 )
 Added by Andreas Eckart
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss mm-wavelength radio, 2.2-11.8um NIR and 2-10 keV X-ray light curves of the super massive black hole (SMBH) counterpart of Sagittarius A* (SgrA*) near its lowest and highest observed luminosity states. The luminosity during the low state can be interpreted as synchrotron emission from a continuous or even spotted accretion disk. For the high luminosity state SSC emission from THz peaked source components can fully account for the flux density variations observed in the NIR and X-ray domain. We conclude that at near-infrared wavelengths the SSC mechanism is responsible for all emission from the lowest to the brightest flare from SgrA*. For the bright flare event of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC model combined with adiabatic expansion can explain the related peak luminosities and different widths of the flare profiles obtained in the NIR and X-ray regime as well as the non detection in the radio domain.



rate research

Read More

Context. The Sagittarius (Sgr) dwarf galaxy is merging with the Milky Way, and the study of its globular clusters (GCs) is important to understand the history and outcome of this ongoing process. Aims. Our main goal is to characterize the GC system of the Sgr dwarf galaxy. This task is hampered by high foreground stellar contamination, mostly from the Galactic bulge. Methods. We performed a GC search specifically tailored to find new GC members within the main body of this dwarf galaxy using the combined data of the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared survey and the Gaia Early Data Release 3 (EDR3) optical database. Results. We applied proper motion (PM) cuts to discard foreground bulge and disk stars, and we found a number of GC candidates in the main body of the Sgr dwarf galaxy. We selected the best GCs as those objects that have significant overdensities above the stellar background of the Sgr galaxy and that possess color-magnitude diagrams (CMDs) with well-defined red giant branches (RGBs) consistent with the distance and reddening of this galaxy. Conclusions. We discover eight new GC members of the Sgr galaxy, which adds up to 29 total GCs known in this dwarf galaxy. This total number of GCs shows that the Sgr dwarf galaxy hosts a rather rich GC system. Most of the new GCs appear to be predominantly metal-rich and have low luminosity. In addition, we identify ten other GC candidates that are more uncertain and need more data for proper confirmation.
We present DES14X2fna, a high-luminosity, fast-declining type IIb supernova (SN IIb) at redshift $z=0.0453$, detected by the Dark Energy Survey (DES). DES14X2fna is an unusual member of its class, with a light curve showing a broad, luminous peak reaching $M_rsimeq-19.3$ mag 20 days after explosion. This object does not show a linear decline tail in the light curve until $simeq$60 days after explosion, after which it declines very rapidly (4.38$pm$0.10 mag 100 d$^{-1}$ in $r$-band). By fitting semi-analytic models to the photometry of DES14X2fna, we find that its light curve cannot be explained by a standard $^{56}$Ni decay model as this is unable to fit the peak and fast tail decline observed. Inclusion of either interaction with surrounding circumstellar material or a rapidly-rotating neutron star (magnetar) significantly increases the quality of the model fit. We also investigate the possibility for an object similar to DES14X2fna to act as a contaminant in photometric samples of SNe Ia for cosmology, finding that a similar simulated object is misclassified by a recurrent neural network (RNN)-based photometric classifier as a SN Ia in $sim$1.1-2.4 per cent of cases in DES, depending on the probability threshold used for a positive classification.
Wrapping around the Milky Way, the Sagittarius stream is the dominant substructure in the halo. Our statistical selection method has allowed us to identify 106 highly likely members of the Sagittarius stream. Spectroscopic analysis of metallicity and kinematics of all members provides us with a new mapping of the Sagittarius stream. We find correspondence between the velocity distribution of stream stars and those computed for a triaxial model of the Milky Way dark matter halo. The Sagittarius trailing arm exhibits a metallicity gradient, ranging from $-0.59$ dex to $-0.97$ dex over 142$^{circ}$. This is consistent with the scenario of tidal disruption from a progenitor dwarf galaxy that possessed an internal metallicity gradient. We note high metallicity dispersion in the leading arm, causing a lack of detectable gradient and possibly indicating orbital phase mixing. We additionally report on a potential detection of the Sextans dwarf spheroidal in our data.
We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R ~15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 degrees from the galaxys center (3.7 core radii or 0.4 times the King limiting radius). From these high quality spectra we identify 1310 Sgr members out of 2296 stars surveyed distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large area sample shows no evidence for significant rotation, a result at odds with the ~20 km/s rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small (<= 4 km/s) velocity trend along primarily the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.
Using a variety of stellar tracers -- blue horizontal branch stars, main-sequence turn-off stars and red giants -- we follow the path of the Sagittarius (Sgr) stream across the sky in Sloan Digital Sky Survey data. Our study presents new Sgr debris detections, accurate distances and line-of-sight velocities that together help to shed new light on the puzzle of the Sgr tails. For both the leading and the trailing tail, we trace the points of their maximal extent, or apo-centric distances, and find that they lie at $R^L$ = 47.8 $pm$ 0.5 kpc and $R^T$ = 102.5 $pm$ 2.5 kpc respectively. The angular difference between the apo-centres is 93.2 $pm$ 3.5 deg, which is smaller than predicted for logarithmic haloes. Such differential orbital precession can be made consistent with models of the Milky Way in which the dark matter density falls more quickly with radius. However, currently, no existing Sgr disruption simulation can explain the entirety of the observational data. Based on its position and radial velocity, we show that the unusually large globular cluster NGC 2419 can be associated with the Sgr trailing stream. We measure the precession of the orbital plane of the Sgr debris in the Milky Way potential and show that, surprisingly, Sgr debris in the primary (brighter) tails evolves differently to the secondary (fainter) tails, both in the North and the South.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا