In this work we study the Nambu-Jona-Lasinio model in the SU (2) version with repulsive vector coupling and apply it to quark stellar matter. We discuss the influence of the vector interaction on the equation of state (EoS) and study quark stars that are composed of pure quark matter with two flavors. We show that, increasing the vector coupling, we obtain more massive stars with larger radii for the same central energy density.
The formalism of Riemannian geometry is applied to study the phase transitions in Nambu -Jona Lasinio (NJL) model. Thermodynamic geometry reliably describes the phase diagram, both in the chiral limit and for finite quark masses. The comparison between the geometrical study of NJL model and of (2+1) Quantum Chromodynamics at high temperature and small baryon density shows a clear connection between chiral symmetry restoration/breaking and deconfinement/confinement regimes.
The critical phenomena in strongly interaction matter are generally investigated using the mean-field model and are characterized by well defined critical exponents. However, such models provide only average properties of the corresponding order parameters and neglect altogether their possible fluctuations. Also the possible long range effect are neglected in the mean field approach. Here we investigate the critical behavior in the nonextensive version of the Nambu Jona-Lasinio model (NJL). It allows to account for such effects in a phenomenological way by means of a single parameter $q$, the nonextensivity parameter. In particular, we show how the nonextensive statistics influence the region of the critical temperature and chemical potential in the NJL mean field approach.
We present a revisited version of the nonextensive QCD-based Nambu - Jona-Lasinio (NJL) model describing the behavior of strongly interacting matter proposed by us some time ago. As before, it is based on the nonextensive generalization of the Boltzmann-Gibbs (BG) statistical mechanics used in the NJL model to its nonextensive version based on Tsallis statistics, but this time it fulfils the basic requirements of thermodynamical consistency. Different ways in which this can be done, connected with different possible choices of the form of the corresponding nonextensive entropies, are presented and discussed in detail. The corresponding results are compared, discussed and confronted with previous findings.
We explore the physical consequences of a scenario when the standard Hermitian Nambu--Jona-Lasinio (NJL) model spontaneously develops a non-Hermitian PT-symmetric ground state via dynamical generation of an anti-Hermitian Yukawa coupling. We demonstrate the emergence of a noncompact non-Hermitian (NH) symmetry group which characterizes the NH ground state. We show that the NH group is spontaneously broken both in weak- and strong-coupling regimes. In the chiral limit at strong coupling, the NH ground state develops inhomogeneity, which breaks the translational symmetry. At weak coupling, the NH ground state is a spatially uniform state, which lies at the boundary between the PT-symmetric and PT-broken phases. Outside the chiral limit, the minimal NJL model does not possess a stable non-Hermitian ground state.
Using the Nambu-Jona-Lasinio model to describe the nucleon as a quark-diquark state, we discuss the stability of nuclear matter in a hybrid model for the ground state at finite nucleon density. It is shown that a simple extension of the model to simulate the effects of confinement leads to a scalar polarizability of the nucleon. This, in turn, leads to a less attractive effective interaction between the nucleons, helping to achieve saturation of the nuclear matter ground state. It is also pointed out that that the same effect naturally leads to a suppression of ``Z-graph contributions with increasing scalar potential.