We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology and photometry in continuum-subtracted H$alpha$, [SII], H$beta$, [OIII] and [OII] filters, we have identified 60 supernova remnant candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible their H$alpha$ fluxes are given. Radiative ages and pre-shock densities are derived from those SNR which have good photometry. The ages lie in the range $2.62 < log(tau_{rm rad}/{rm yr}) < 5.0$, and the pre-shock densities at the blast wave range over $0.56 < n_0/{rm cm^{-3}} < 1680$. Two populations of SNR have been discovered. These divide into a nuclear and spiral arm group and an inter-arm population. We infer an arm to inter-arm density contrast of 4. The surface flux in diffuse X-rays is correlated with the inferred pre-shock density, indicating that the warm interstellar medium is pressurised by the hot X-ray plasma. We also find that the interstellar medium in the nuclear region of M83 is characterized by a very high porosity and pressure and infer a SNR rate of one per 70-150 yr for the nuclear ($R<300 $pc) region. On the basis of the number of SNR detected and their radiative ages, we infer that the lower mass of Type II SNe in M83 is $M_{rm min} = 16^{+7}_ {-5}$ M$_{odot}$. Finally we give evidence for the likely detection of the remnant of the historical supernova, SN1968L.