Do you want to publish a course? Click here

Quantum Monte-Carlo method applied to Non-Markovian barrier transmission

259   0   0.0 ( 0 )
 Added by Guillaume Hupin
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In nuclear fusion and fission, fluctuation and dissipation arise due to the coupling of collective degrees of freedom with internal excitations. Close to the barrier, both quantum, statistical and non-Markovian effects are expected to be important. In this work, a new approach based on quantum Monte-Carlo addressing this problem is presented. The exact dynamics of a system coupled to an environment is replaced by a set of stochastic evolutions of the system density. The quantum Monte-Carlo method is applied to systems with quadratic potentials. In all range of temperature and coupling, the stochastic method matches the exact evolution showing that non-Markovian effects can be simulated accurately. A comparison with other theories like Nakajima-Zwanzig or Time-ConvolutionLess ones shows that only the latter can be competitive if the expansion in terms of coupling constant is made at least to fourth order. A systematic study of the inverted parabola case is made at different temperatures and coupling constants. The asymptotic passing probability is estimated in different approaches including the Markovian limit. Large differences with the exact result are seen in the latter case or when only second order in the coupling strength is considered as it is generally assumed in nuclear transport models. On opposite, if fourth order in the coupling or quantum Monte-Carlo method is used, a perfect agreement is obtained.



rate research

Read More

We discuss the Auxiliary Field Quantum Monte Carlo (AFQMC) method applied to dilute neutron matter at finite temperatures. We formulate the discrete Hubbard-Stratonovich transformation for the interaction with finite effective range which is free from the sign problem. The AFQMC results are compared with those obtained from exact diagonalization for a toy model. Preliminary calculations of energy and chemical potential as a function of temperature are presented.
The Cooperative Motion Algorithm is an efficient lattice method to simulate dense polymer systems and is often used with two different criteria to generate a Markov chain in the configuration space. While the first method is the well-established Metropolis algorithm, the other one is an heuristic algorithm which needs justification. As an introductory step towards justification for the 3D lattice polymers, we study a simple system which is the binary equimolar uid on a 2D triangular lattice. Since all lattice sites are occupied only selected type of motions are considered, such the vacancy movements, swapping neighboring lattice sites (Kawasaki dynamics) and cooperative loops. We compare both methods, calculating the energy as well as heat capacity as a function of temperature. The critical temperature, which was determined using the Binder cumulant, was the same for all methods with the simulation accuracy and in agreement with the exact critical temperature for the Ising model on the 2D triangular lattice. In order to achieve reliable results at low temperatures we employ the parallel tempering algorithm which enables simultaneous simulations of replicas of the system in a wide range of temperatures.
The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the grounds for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and $Lambda$ particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars.
In recent years, the combination of precise quantum Monte Carlo (QMC) methods with realistic nuclear interactions and consistent electroweak currents, in particular those constructed within effective field theories (EFTs), has lead to new insights in light and medium-mass nuclei, neutron matter, and electroweak reactions. This compelling new body of work has been made possible both by advances in QMC methods for nuclear physics, which push the bounds of applicability to heavier nuclei and to asymmetric nuclear matter and by the development of local chiral EFT interactions up to next-to-next-to-leading order and minimally nonlocal interactions including $Delta$ degrees of freedom. In this review, we discuss these recent developments and give an overview of the exciting results for nuclei, neutron matter and neutron stars, and electroweak reactions.
Auxiliary Field Diffusion Monte Carlo (AFDMC) calculations have been employed to revise the interaction between $Lambda$-hyperons and nucleons in hypernuclei. The scheme used to describe the interaction, inspired by the phenomenological Argonne-Urbana forces, is the $Lambda N+Lambda NN$ potential firstly introduced by Bodmer, Usmani et al.. Within this framework, we performed calculations on light and medium mass hypernuclei in order to assess the extent of the repulsive contribution of the three-body part. By tuning this contribution in order to reproduce the $Lambda$ separation energy in $^5_Lambda$He and $^{17}_{~Lambda}$O, experimental findings are reproduced over a wide range of masses. Calculations have then been extended to $Lambda$-neutron matter in order to derive an analogous of the symmetry energy to be used in determining the equation of state of matter in the typical conditions found in the inner core of neutron stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا