Do you want to publish a course? Click here

Kepler Science Operations

113   0   0.0 ( 0 )
 Added by Michael Haas
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Keplers primary mission is a search for earth-size exoplanets in the habitable zone of late-type stars using the transit method. To effectively accomplish this mission, Kepler orbits the Sun and stares nearly continuously at one field-of-view which was carefully selected to provide an appropriate density of target stars. The data transmission rates, operational cycles, and target management requirements implied by this mission design have been optimized and integrated into a comprehensive plan for science operations. The commissioning phase completed all critical tasks and accomplished all objectives within a week of the pre-launch plan. Since starting science, the nominal data collection timeline has been interrupted by two safemode events, several losses of fine point, and some small pointing adjustments. The most important anomalies are understood and mitigated, so Keplers technical performance metrics have improved significantly over this period and the prognosis for mission success is excellent. The Kepler data archive is established and hosting data for the science team, guest observers, and public. The first data sets to become publicly available include the monthly full-frame images, dropped targets, and individual sources as they are published. Data are released through the archive on a quarterly basis; the Kepler Results Catalog will be released annually starting in 2011.



rate research

Read More

Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASAs Kepler Space Telescope. Kepler has discovered the majority of known exoplanets, the smallest planets to orbit normal stars, and the worlds most likely to be similar to our home planet. Most importantly, Kepler has provided our first look at typical characteristics of planets and planetary systems for planets with sizes as small as and orbits as large as those of the Earth.
The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each stars centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.
79 - S.M. Jia , X. Ma , Y. Huang 2019
The Hard X-ray Modulation Telescope ($Insight$-HXMT) was successfully launched on June 15th, 2017. It performs broad band X-ray scan survey of the Galactic Plane to detect new black holes and other objects in active states. It also observes X-ray binaries to study their X-ray variabilities. Here we will introduce the Science Operations of $Insight$-HXMT, which is responsible for collecting and evaluating observation proposals, scheduling observations, and monitoring the working status of the payloads.
The Kepler Mission, launched on Mar 6, 2009 was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just forty-three days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.
Brief outline of Science Operations Centre activities for Gaia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا