Do you want to publish a course? Click here

Solar-like oscillations in low-luminosity red giants: first results from Kepler

169   0   0.0 ( 0 )
 Added by Tim Bedding
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.



rate research

Read More

We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main-sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (nu_max), the large frequency separation (Delta_nu) and oscillation amplitudes. We show that the difference of the Delta_nu-nu_max relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M)^s scaling nor the revised scaling relation by Kjeldsen & Bedding (2011) are accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main-sequence to red-giants to a precision of ~25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.
Solar-like oscillations are excited in cool stars with convective envelopes and provide a powerful tool to constrain fundamental stellar properties and interior physics. We provide a brief history of the detection of solar-like oscillations, focusing in particular on the space-based photometry revolution started by the CoRoT and Kepler Missions. We then discuss some of the lessons learned from these missions, and highlight the continued importance of smaller space telescopes such as BRITE constellation to characterize very bright stars with independent observational constraints. As an example, we use BRITE observations to measure a tentative surface rotation period of 28.3+/-0.5 days for alpha Cen A, which has so far been poorly constrained. We also discuss the expected yields of solar-like oscillators from the TESS Mission, demonstrating that TESS will complement Kepler by discovering oscillations in a large number of nearby subgiants, and present first detections of oscillations in TESS exoplanet host stars.
The length of the asteroseismic timeseries obtained from the Kepler satellite analysed here span 19 months. Kepler provides the longest continuous timeseries currently available, which calls for a study of the influence of the increased timespan on the accuracy and precision of the obtained results. We find that in general a minimum of the order of 400 day long timeseries are necessary to obtain reliable results for the global oscillation parameters in more than 95% of the stars, but this does depend on <dnu>. In a statistical sense the quoted uncertainties seem to provide a reasonable indication of the precision of the obtained results in short (50-day) runs, they do however seem to be overestimated for results of longer runs. Furthermore, the different definitions of the global parameters used in the different methods have non-negligible effects on the obtained values. Additionally, we show that there is a correlation between nu_max and the flux variance. We conclude that longer timeseries improve the likelihood to detect oscillations with automated codes (from ~60% in 50 day runs to > 95% in 400 day runs with a slight method dependence) and the precision of the obtained global oscillation parameters. The trends suggest that the improvement will continue for even longer timeseries than the 600 days considered here, with a reduction in the median absolute deviation of more than a factor of 10 for an increase in timespan from 50 to 2000 days (the currently foreseen length of the mission). This work shows that global parameters determined with high precision - thus from long datasets - using different definitions can be used to identify the evolutionary state of the stars. (abstract truncated)
We present the results of the asteroseismic analysis of the red-giant star KIC 4351319 (TYC 3124-914-1), observed for 30 days in short-cadence mode with the Kepler satellite. The analysis has allowed us to determine the large and small frequency separations, and the frequency of maximum oscillation power. The high signal-to-noise ratio of the observations allowed us to identify 25 independent pulsation modes whose frequencies range approximately from 300 to 500 muHz. The observed oscillation frequencies together with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well defined solar-type p-modes pattern due to radial acoustic modes and non-radial nearly pure p modes. In addition, several non-radial mixed modes have been identified. Theoretical models well reproduce the observed oscillation frequencies and indicate that this star, located at the base of the ascending red-giant branch, is in the hydrogen-shell burning phase, with a mass of about 1.3 solar masses, a radius of about 3.4 solar radii and an age of about 5.6 Gyr. The main parameters of this star have been determined with an unprecedent level of precision for a red-giant star, with uncertainties of 2% for mass, 7% for age, 1% for radius, and 4% for luminosity.
Frequencies of acoustic and mixed modes in red giant stars are now determined with high precision thanks to the long continuous observations provided by the NASA Kepler mission. Here we consider the eigenfrequencies of nineteen low-luminosity red giant stars selected by Corsaro et al. (2015) for a detailed peak-bagging analysis. Our objective is to obtain stellar parameters by using individual mode frequencies and spectroscopic information. We use a forward modelling technique based on a minimization procedure combining the frequencies of the p modes, the period spacing of the dipolar modes, and the spectroscopic data. Consistent results between the forward modelling technique and values derived from the seismic scaling relations are found but the errors derived using the former technique are lower. The average error for log g is 0.002 dex, compared to 0.011 dex from the frequency of maximum power and 0.10 dex from the spectroscopic analysis. Relative errors in the masses and radii are on average 2 and 0.5 per cent respectively, compared to 3 and 2 per cent derived from the scaling relations. No reliable determination of the initial helium abundances and the mixing length parameters could be made. Finally, for our grid of models with a given input physics, we found that low-mass stars require higher values of the overshooting parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا