We study thermal entanglement in a two-superconducting-qubit system in two cases, either identical or distinct. By calculating the concurrence of system, we find that the entangled degree of the system is greatly enhanced in the case of very low temperature and Josephson energies for the identical superconducting qubits, and our result is in a good agreement with the experimental data.
We analyze the dynamics of entanglement in a two-qubit system interacting with an initially squeezed thermal environment via a quantum nondemolition system-reservoir interaction, with the system and reservoir assumed to be initially separable. We compare and contrast the decoherence of the two-qubit system in the case where the qubits are mutually close-by (`collective regime) or distant (`localized regime) with respect to the spatial variation of the environment. Sudden death of entanglement (as quantified by concurrence) is shown to occur in the localized case rather than in the collective case, where entanglement tends to `ring down. A consequence of the QND character of the interaction is that the time-evolved fidelity of a Bell state never falls below $1/sqrt{2}$, a fact that is useful for quantum communication applications like a quantum repeater. Using a novel quantification of mixed state entanglement, we show that there are noise regimes where even though entanglement vanishes, the state is still available for applications like NMR quantum computation, because of the presence of a pseudo-pure component.
Numerous work had been done to quantify the entanglement of a two-qubit quantum state, but it can be seen that previous works were based on joint measurements on two copies or more than two copies of a quantum state under consideration. In this work, we show that a single copy and two measurements are enough to estimate the entanglement quantifier like entanglement negativity and concurrence. To achieve our aim, we establish a relationship between the entanglement negativity and the minimum eigenvalue of structural physical approximation of partial transpose of an arbitrary two-qubit state. The derived relation make possible to estimate entanglement negativity experimentally by Hong-Ou-Mandel interferometry with only two detectors. Also, we derive the upper bound of the concurrence of an arbitrary two-qubit state and have shown that the upper bound can be realized in experiment. We will further show that the concurrence of (i) an arbitrary pure two-qubit states and (ii) a particular class of mixed states, namely, rank-2 quasi-distillable mixed states, can be exactly estimated with two measurements.
Two noninteracting atoms, initially entangled in Bell states, are coupled to a one-mode cavity. Based on the reduced non-perturbative quantum master equation, the entanglement evolution of the two atoms with decay is investigated beyond rotating-wave approximation. It is shown that the counter-rotating wave terms have great influence on the disentanglement behavior. The phenomenon of entanglement sudden death and entanglement sudden birth will occur.
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to the lowest error-time product reported in solid-state quantum information platforms to date.
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of $0.668 pm 0.025$. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.