Quantifying structure in networks


Abstract in English

We investigate exponential families of random graph distributions as a framework for systematic quantification of structure in networks. In this paper we restrict ourselves to undirected unlabeled graphs. For these graphs, the counts of subgraphs with no more than k links are a sufficient statistics for the exponential families of graphs with interactions between at most k links. In this framework we investigate the dependencies between several observables commonly used to quantify structure in networks, such as the degree distribution, cluster and assortativity coefficients.

Download