Temperature dependence of uniform static magnetic susceptibility in a two-dimensional quantum Heisenberg antiferromagnetic model


Abstract in English

A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artificial phase transition has been removed. To the zeroth order, the main features of the uniform static susceptibility are produced: a linear temperature dependence at low temperatures and a smooth crossover in the intermediate range and the Curie law at high temperatures. When the leading corrections from the spin-wave interactions are included, the resulting spin susceptibility in the full temperature range is in agreement with the numerical quantum Monte Carlo simulations and high-temperature series expansions.

Download