No Arabic abstract
We present results of a study of the localization capability of Fermi-LAT, using a large set of blazars with precise radio locations. Since the width of the PSF decreases with energy, the performance is typically dominated by a few high energy photons, so it is important to properly characterize the high-energy PSF. Using such data, we have found a need to modify the pre-launch high-energy (greater than a few GeV) PSF derived from extensive Monte Carlo simulations of particle interactions in the LAT; the resulting data-based PSF is shown
To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.
We present the first Fermi Large Area Telescope (LAT) low energy catalog (1FLE) of sources detected in the energy range 30 - 100 MeV. The COMPTEL telescope detected sources below 30 MeV, while catalogs released by the Fermi-LAT and EGRET collaborations use energies above 100 MeV. We create a list of sources detected in the energy range between 30 and 100 MeV, which closes a gap of point source analysis between the COMPTEL catalog and the Fermi-LAT catalogs. One of the main challenges in the analysis of point sources is the construction of the background diffuse emission model. In our analysis, we use a background-independent method to search for point-like sources based on a wavelet transform implemented in the PGWave code. The 1FLE contains 198 sources detected above 3 $sigma$ significance with eight years and nine months of the Fermi-LAT data. For 187 sources in the 1FLE catalog we have found an association in the Fermi-LAT 3FGL catalog: 148 are extragalactic, 22 are Galactic, and 17 are unclassified in the 3FGL. The ratio of the number of flat spectrum radio quasars (FSRQ) to BL Lacertae (BL Lacs) in 1FLE is 3 to 1, which can be compared with an approximately 1 to 1 ratio for the 3FGL or a 1 to 6 ratio for 3FHL. The higher ratio of the FSRQs in the 1FLE is expected due to generally softer spectra of FSRQs relative to BL Lacs. Most BL Lacs in 1FLE are of low-synchrotron peaked blazar type (18 out of 31), which have softer spectra and higher redshifts than BL Lacs on average. Correspondingly, we find that the average redshift of the BL Lacs in 1FLE is higher than in 3FGL or 3FHL. There are 11 sources that do not have associations in the 3FGL. Most of the unassociated sources either come from regions of bright diffuse emission or have several known 3FGL sources in the vicinity, which can lead to source confusion. The remaining unassociated sources have significance less than 4 $sigma$.
Four years into the mission, the understanding of the performance of the Fermi Large Area Telescope (LAT) and data analysis have increased enormously since launch. Thanks to a careful analysis of flight data, we were able to trace back some of the most significant sources of systematic uncertainties to using non-optimal calibration constants for some of the detectors. In this paper we report on a major effort within the LAT Collaboration to update these constants, to use them to reprocess the first four years of raw data, and to investigate the improvements observed for low- and high-level analysis. The Pass 7 reprocessed data, also known as P7REP data, are still being validated against the original Pass~7 (P7) data by the LAT Collaboration and should be made public, along with the corresponding instrument response functions, in the spring of 2013.
We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of gamma-ray bursts (GRB) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instruments field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a bursts prompt gamma-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swifts X-ray Telescope (XRT) at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the bursts afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.
Classification of sources is one of the most important tasks in astronomy. Sources detected in one wavelength band, for example using gamma rays, may have several possible associations in other wavebands or there may be no plausible association candidates. In this work, we aim to determine probabilistic classification of unassociated sources in the third and the fourth data release 2 Fermi Large Area Telescope (LAT) point source catalogs (3FGL and 4FGL-DR2) into two classes (pulsars and active galactic nuclei (AGNs)) or three classes (pulsars, AGNs, and other sources). We use several machine learning (ML) methods to determine probabilistic classification of Fermi-LAT sources. We evaluate the dependence of results on meta-parameters of the ML methods, such as the maximal depth of the trees in tree-based classification methods and the number of neurons in neural networks. We determine probabilistic classification of both associated and unassociated sources in 3FGL and 4FGL-DR2 catalogs. We cross-check the accuracy by comparing the predicted classes of unassociated sources in 3FGL that have associations in 4FGL-DR2. We find that in the 2-class case it is important to correct for the presence of other sources among the unassociated ones in order to realistically estimate the number of pulsars and AGNs. In particular, the estimated number of pulsars in the 3FGL (4FGL-DR2) catalog is 270 (483) in the 2-class case without corrections for the other sources and 158 (215) in the 3-class case. Provided that the number of associated pulsars is 167 (271) in the 3FGL (4FGL-DR2) catalog, the number of pulsars among the unassociated sources is expected to be similar or larger than the number of associated ones.