Do you want to publish a course? Click here

New unidentified Galactic H.E.S.S. sources

215   0   0.0 ( 0 )
 Added by Omar Tibolla
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

H.E.S.S. is one of the most sensitive instruments in the very high energy (VHE; > 100 GeV) gamma-ray domain and has revealed many new sources along the Galactic Plane. After the successful first VHE Galactic Plane Survey of 2004, H.E.S.S. has continued and extended that survey in 2005-2008, discovering a number of new sources, many of which are unidentified. Some of the unidentified H.E.S.S. sources have several positional counterparts and hence several different possible scenarios for the origin of the VHE gamma-ray emission; their identification remains unclear. Others have so far no counterparts at any other wavelength. Particularly, the lack of an X-ray counterpart puts serious constraints on emission models. Several newly discovered and still unidentified VHE sources are reported here.



rate research

Read More

156 - Nukri Komin 2012
Supernova remnants (SNRs) are the prime candidates for the acceleration of the Galactic Cosmic Rays. Tracers for interactions of Cosmic Rays with ambient material are gamma rays at TeV energies, which can be observed with ground based Cherenkov telescopes like H.E.S.S. In the recent years H.E.S.S. has detected several SNRs and interactions of SNRs with molecular clouds. Here the current results of these observations are presented and possible leptonic and hadronic scenarios are discussed. It is shown that it is likely that SNRs are the sources of Galactic Cosmic Rays.
Recently the H.E.S.S. collaboration announced the detection of an unidentified gamma-ray source with an off-set from the galactic plane of 3.5 degrees: HESS J1507-622. If the distance of the object is larger than about one kpc it would be physically located outside the galactic disk. The density profile of the ISM perpendicular to the galactic plane, which acts as target material for hadronic gamma-ray production, drops quite fast with increasing distance. This fact places distance dependent constraints on the energetics and properties of off-plane gamma-ray sources like HESS J1507-622 if a hadronic origin of the gamma-ray emission is assumed. For the case of this source it is found that there seems to be no simple way to link this object to the remnant of a stellar explosions.
322 - Kouichi Hirotani , Hung-Yi Pu , 2018
Imaging Atmospheric Cherenkov Telescopes have revealed more than 100 TeV sources along the Galactic Plane, around 45% of them remain unidentified. However, radio observations revealed that dense molecular clumps are associated with 67% of 18 unidentified TeV sources. In this paper, we propose that an electron-positron magnetospheric accelerator emits detectable TeV gamma-rays when a rapidly rotating black hole enters a gaseous cloud. Since the general-relativistic effect plays an essential role in this magnetospheric lepton accelerator scenario, the emissions take place in the direct vicinity of the event horizon, resulting in a point-like gamma-ray image. We demonstrate that their gamma-ray spectra have two peaks around 0.1 GeV and 0.1 TeV and that the accelerators become most luminous when the mass accretion rate becomes about 0.01% of the Eddington accretion rate. We compare the results with alternative scenarios such as the cosmic-ray hadron scenario, which predicts an extended morphology of the gamma-ray image with a single power-law photon spectrum from GeV to 100 TeV.
We report on the results of deep X-ray follow-up observations of four unidentified Fermi/LAT gamma-ray sources at high Galactic latitudes using Suzaku. The studied objects were detected with high significance during the first 3 months of Fermi/LAT operation, and subsequently better localized in the Fermi/LAT 1 year catalog (1FGL). Possible associations with pulsars and active galaxies have subsequently been discussed, and our observations provide an important contribution to this debate. In particular, an X-ray point source was found within the 95% confidence error circle of 1FGL J1231.1-1410. X-ray spectrum is well-fitted by a blackbody with an additional power-law. This supports the recently claimed identification of this source with a millisecond pulsar (MSP) PSR J1231-1411. Concerning 1FGL J1311.7-3429, two X-ray sources were found within the LAT error circle. Even though the X-ray spectral and variability properties were accessed, their nature and relationship with the gamma-ray source remain uncertain. We found several weak X-ray sources in the field of 1FGL J1333.2+5056, one coinciding with CLASS J1333+5057. We argue the available data are consistent with the association between these two objects. Finally, we have detected an X-ray source in the vicinity of 1FGL J2017.3+0603. This object was recently suggested to be associated with a newly discovered MSP PSR J2017+0603, because of the spatial-coincidence and the gamma-ray pulse detection. We have only detected the X-ray counterpart of the CLASS J2017+0603, while we determined an X-ray flux upper limit at the pulsar position. All in all, our studies indicate while a significant fraction of unidentified high Galactic latitude gamma-ray sources is related to the pulsar and blazar phenomena, associations with other classes of astrophysical objects are still valid options.
The distribution on the sky of unidentified sources at the highest energies where such a population is evident is investigated. For this purpose, sources without identification in the first Fermi-LAT catalog >10 GeV (1FHL) that are good candidates for detection above the 50-100 GeV regime are selected. The distributions of these objects around the Galactic and super-galactic plane are explored. By using a Kolmogorov-Smirnov test it is examined if these sources are distributed homogeneously around these planes. Surprisingly, an indication for an inhomogeneous distribution is found for the case of the super-galactic plane where a homogeneous distribution can be excluded by a confidence level of 95%. On a 90% confidence level also a homogeneous distribution of sources around the Galactic plane can be excluded. For the hypothesis that this reflects the true distribution of sources rather than a statistical fluctuation, implications for the underlying source populations are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا