Do you want to publish a course? Click here

The H-alpha luminosity function at redshift 2.2: A new determination using VLT/HAWK-I

104   0   0.0 ( 0 )
 Added by Matthew Hayes
 Publication date 2009
  fields Physics
and research's language is English
 Authors Matthew Hayes




Ask ChatGPT about the research

We aim to place new, strengthened constraints on the luminosity function (LF) of H-alpha emitting galaxies at redshift z=2.2, and to further constrain the instantaneous star-formation rate density of the universe (rho*). We have used the new HAWK-I instrument at ESO-VLT to obtain extremely deep narrow-band (line; NB2090) and broad-band (continuum; Ks) imaging observations. The target field is in the GOODS-South, providing us with a rich multi-wavelength auxiliary data set, which we utilise for redshift confirmation and to estimate dust content. We use this new data to measure the faint-end slope (alpha) of LF(H-alpha) with unprecedented precision. The data are well fit by a Schechter function and also a single power-law, yielding alpha=(-1.72 +/- 0.20) and (-1.77 +/- 0.21), respectively. Thus we are able to confirm the steepening of alpha from low- to high-z predicted by a number of authors and observed at other wavelengths. We combine our LF data-points with those from a much shallower but wider survey at z=2.2 (Geach et al. 2008), constructing a LF spanning a factor of 50 in luminosity. Re-fitting the Schechter parameters, we obtain log L*=(43.07+/-0.22)erg s^-1 ; log phi*=(-3.45+/-0.52)Mpc^-3 ; alpha=(-1.60+/-0.15). We integrate over LF(Halpha) and apply a correction for dust attenuation to determine the instantaneous cosmic star-formation rate density at z=2 without assuming alpha or extrapolating it from lower-z. Our measurement of rho* is (0.215+/-0.090) Msun yr^-1 Mpc^-3, integrated over a range of 37 <log(LHhalpha / erg s^-1) < 47.



rate research

Read More

133 - Vithal Tilvi 2010
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging search for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.
276 - Chun Ly (1 , 2 , 3 2010
[Abridged] We present new measurements of the H-alpha luminosity function (LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on 1.18$mu$m narrowband data from the NEWFIRM H-alpha Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth ($approx1.9times10^{-17}$ erg s$^{-1}$ cm$^{-2}$ in H-alpha at 3$sigma$) and areal coverage (0.82 deg$^2$) complements other recent H-alpha studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required. The dust-corrected LF is well-described by a Schechter function with L*=10^{43.00pm0.52} ergs s^{-1}, phi*=10^{-3.20pm0.54} Mpc^{-3}, and alpha=-1.6pm0.19. We compare our H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha SFR density of 10^{-1.00pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z~1. We discuss how these results compare to other H-alpha surveys at z~0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure.
252 - Alaina Henry 2011
Using new Keck DEIMOS spectroscopy, we examine the origin of the steep number counts of ultra-faint emission-line galaxies recently reported by Dressler et al. (2011). We confirm six Lyman Alpha emitters (LAEs), three of which have significant asymmetric line profiles with prominent wings extending 300-400 km/s redward of the peak emission. With these six LAEs, we revise our previous estimate of the number of faint LAEs in the Dressler et al. survey. Combining these data with the density of bright LAEs in the Cosmic Origins Survey and Subaru Deep Field provides the best constraints to date on the redshift 5.7 LAE luminosity function (LF). Schechter function parameters, phi^* = 4.5 x 10^{-4} Mpc^{-3}, L^* = 9.1 x 10^{42} erg s^{-1}, and alpha= -1.70, are estimated using a maximum likelihood technique with a model for slit losses. To place this result in the context of the UV-selected galaxy population, we investigate how various parameterizations of the Lyman Alpha equivalent width distribution, along with the measured UV-continuum LF, affect shape and normalization of the Lyman Alpha LF. The nominal model, which uses z~6 equivalent widths from the literature, falls short of the observed space density of LAEs at the bright end, possibly indicating a need for higher equivalent widths. This parameterization of the equivalent width distribution implies that as many as 50% of our faintest LAEs should have M_{UV} > -18.0, rendering them undetectable in even the deepest Hubble Space Telescope surveys at this redshift. Hence, ultra-deep emission-line surveys find some of the faintest galaxies ever observed at the end of the reionization epoch. Such faint galaxies likely enrich the intergalactic medium with metals and maintain its ionized state. Observations of these objects provide a glimpse of the building blocks of present-day galaxies at an early time.
We report in this work on a project aimed at determining Ly{alpha} luminosity functions from z=3 to z=6. The project is based on the use of very deep photometry from the SHARDS Survey, in a set of 24 medium band filters in the GOODS-N field. We present here some preliminary work carried out with four test images in four consecutive bands. We use the narrow band selection technique for searching emission line candidates. Eleven candidates have been detected so far, many of which are strong Ly{alpha} candidates. In particular, we have seen a firm candidate to an interacting pair of Ly{alpha} sources at z=5.4.
225 - Ken-ichi Tadaki 2010
We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) which corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of galaxy formation bias at high redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا