Do you want to publish a course? Click here

The HARPS search for southern extrasolar planets XXI. Three new giant planets orbiting the metal-poor stars HD5388, HD181720, and HD190984

195   0   0.0 ( 0 )
 Added by Nuno C. Santos
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of three new giant planets around three metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging from 0.26 to 0.57) and long orbital periods (from 777 to 4885 days). Two of the stars (HD181720 and HD190984) were part of a program searching for giant planets around a sample of ~100 moderately metal-poor stars, while HD5388 was part of the volume-limited sample of the HARPS GTO program. Our discoveries suggest that giant planets in long period orbits are not uncommon around moderately metal-poor stars.



rate research

Read More

146 - Thierry Forveille 2010
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H]=-0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H]=-0.17), and Gl 676A ([Fe/H=0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5~Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses.
Stellar metallicity -- as a probe of the metallicity of proto-planetary disks -- is an important ingredient for giant planet formation, likely through its effect on the timescales in which rocky/icy planet cores can form. Giant planets have been found to be more frequent around metal-rich stars, in agreement with predictions based on the core-accretion theory. In the metal-poor regime, however, the frequency of planets, especially low-mass planets, and how it depends on metallicity are still largely unknown. As part of a planet search programme focused on metal-poor stars, we study the targets from this survey that were observed with HARPS on more than 75 nights. The main goals are to assess the presence of low-mass planets and provide a first estimate of the frequency of Neptunes and super-Earths around metal-poor stars. We perform a systematic search for planetary companions, both by analysing the periodograms of the radial-velocities and by comparing, in a statistically-meaningful way, models with an increasing number of Keplerians. A first constraint on the frequency of planets in our metal-poor sample is calculated considering the previous detection (in our sample) of a Neptune-sized planet around HD175607 and one candidate planet (with an orbital period of 68.42d and minimum mass $M_p sin i = 11.14 pm 2.47 M_{oplus}$) for HD87838, announced in the present study. This frequency is determined to be close to 13% and is compared with results for solar-metallicity stars.
382 - A. Sozzetti 2009
We present an analysis of three years of precision radial velocity measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude radial-velocity variables worthy of follow-up with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semi-amplitude K > 100 m/s, or M_p*sin(i) > 3.0 M_JUP*(P/yr)^(1/3), for orbital periods P< 3 yr. None of the stars in our sample exhibits radial-velocity variations compatible with the presence of Jovian planets with periods shorter than the survey duration. The resulting average frequency of gas giants orbiting metal-poor dwarfs with -2.0 < [Fe/H] < -0.6 is f_p<0.67% (at the 1-sigma confidence level). We examine the implications of this null result in the context of the observed correlation between the rate of occurrence of giant planets and the metallicity of their main-sequence solar-type stellar hosts. By combining our dataset with the Fischer & Valenti (2005) uniform sample, we confirm that the likelihood of a star to harbor a planet more massive than Jupiter within 2 AU is a steeply rising function of the hosts metallicity. However, the data for stars with -1.0 < [Fe/H] < 0.0 are compatible, in a statistical sense, with a constant occurrence rate f_p~1%. Our results can usefully inform theoretical studies of the process of giant planet formation across two orders of magnitude in metallicity.
Context. The presence of a small-mass planet (M$_p<$0.1,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A large, dedicated survey of metal-poor stars with the HARPS spectrograph has thus been carried out to search for Neptunes and super-Earths. Aims. In this paper, we present the analysis of object{HD175607}, an old G6 star with metallicity [Fe/H] = -0.62. We gathered 119 radial velocity measurements in 110 nights over a time span of more than nine years. Methods. The radial velocities were analysed using Lomb-Scargle periodograms, a genetic algorithm, a Markov chain Monte Carlo analysis, and a Gaussian processes analysis. The spectra were also used to derive stellar properties. Several activity indicators were analysed to study the effect of stellar activity on the radial velocities. Results. We find evidence for the presence of a small Neptune-mass planet (M$_{p}sin i = 8.98pm1.10$,M$_{oplus}$) orbiting this star with an orbital period $P = 29.01pm0.02$, days in a slightly eccentric orbit ($e=0.11pm0.08$). The period of this Neptune is close to the estimated rotational period of the star. However, from a detailed analysis of the radial velocities together with the stellar activity, we conclude that the best explanation of the signal is indeed the presence of a planetary companion rather than stellar related. An additional longer period signal ($Psim 1400$,d) is present in the data, for which more measurements are needed to constrain its nature and its properties. Conclusions. HD,175607 is the most metal-poor FGK dwarf with a detected low-mass planet amongst the currently known planet hosts. This discovery may thus have important consequences for planet formation and evolution theories.
Planets are known to orbit giant stars, yet there is a shortage of planets orbiting within ~0.5 AU (P<100 days). First-ascent giants have not expanded enough to engulf such planets, but tidal forces can bring planets to the surface of the star far beyond the stellar radius. So the question remains: are tidal forces strong enough in these stars to engulf all the missing planets? We describe a high-cadence observational program to obtain precise radial velocities of bright giants from Weihai Observatory of Shandong University. We present data on the planet host Beta Gem (HD 62509), confirming our ability to derive accurate and precise velocities; our data achieve an rms of 7.3 m/s about the Keplerian orbit fit. This planet-search programme currently receives ~100 nights per year, allowing us to aggressively pursue short-period planets to determine whether they are truly absent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا