Do you want to publish a course? Click here

Theoretical foundation for the Index Theorem on the lattice with staggered fermions

147   0   0.0 ( 0 )
 Added by David Adams
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

A way to identify the would-be zero-modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accordance with the Index Theorem. The key idea is to consider the spectral flow of a certain hermitian version of the staggered Dirac operator. The staggered fermion index thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a numerical study in U(1) backgrounds in 2 dimensions it is found to perform as well as the Wilson index while being computationally more efficient. It can also be expressed as the index of an overlap Dirac operator with a new staggered fermion kernel.



rate research

Read More

We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic (quenched) gauge configurations. We obtain clear numerical evidence that the definition works as expected: there is a clear separation between crossings near and far away from the origin, and the topological charge defined through the crossings near the origin agrees, for most configurations, with the one defined through the near-zero modes of large taste-singlet chirality of the staggered Dirac operator. The crossings are much closer to the origin if we improve the Dirac operator used in the definition, and they move towards the origin as we decrease the lattice spacing.
We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic gauge configurations. We study both the unimproved and the HISQ Dirac operators. We compare the spectral flow index with the index obtained by identifying low-lying modes of large chirality.
We present a theoretical foundation for the Index theorem in naive and minimally doubled lattice fermions by studying the spectral flow of a Hermitean version of Dirac operators. We utilize the point splitting method to implement flavored mass terms, which play an important role in constructing proper Hermitean operators. We show the spectral flow correctly detects the index of the would-be zero modes which is determined by gauge field topology. Using the flavored mass terms, we present new types of overlap fermions from the naive fermion kernels, with a number of flavors that depends on the choice of the mass terms. We succeed to obtain a single-flavor naive overlap fermion which maintains hypercubic symmetry.
239 - Claude Bernard 2007
With sufficiently light up and down quarks the isovector ($a_0$) and isosinglet ($f_0$) scalar meson propagators are dominated at large distance by two-meson states. In the staggered fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rSXPT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the $a_0$ and $f_0$ channels in the ``Asqtad improved staggered fermion formulation in a lattice ensemble with lattice spacing $a = 0.12$ fm. We analyze those correlators in the context of rSXPT and obtain values of the low energy chiral couplings that are reasonably consistent with previous determinations.
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD. We find a clear separation of the spectrum of eigenvalues into high chirality, would-be zero modes and others, in accordance with the Index Theorem. We find the expected clustering of the non-zero modes into quartets as we approach the continuum limit. The predictions of random matrix theory for the epsilon regime are well reproduced. We conclude that improved staggered quarks near the continuum limit respond correctly to QCD topology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا