Do you want to publish a course? Click here

Quarkonium mass splittings in three-flavor lattice QCD

110   0   0.0 ( 0 )
 Added by Ludmila Levkova
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We report on calculations of the charmonium and bottomonium spectrum in lattice QCD. We use ensembles of gauge fields with three flavors of sea quarks, simulated with the asqtad improved action for staggered fermions. For the heavy quarks we employ the Fermilab interpretation of the clover action for Wilson fermions. These calculations provide a test of lattice QCD, including the theory of discretization errors for heavy quarks. We provide, therefore, a careful discussion of the results in light of the heavy-quark effective Lagrangian. By and large, we find that the computed results are in agreement with experiment, once parametric and discretization errors are taken into account.



rate research

Read More

Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of $M_n-M_p=1.35(18)(8),mbox{MeV}$ and the electromagnetic contribution to the pion splitting $M_{pi^+}-M_{pi^0}=4.60(20),mbox{MeV}$. Further we report first determination of the separation between strong and electromagnetic contributions in the $bar{MS}$ scheme.
71 - C. Aubin , C. Bernard , C. DeTar 2005
We present the first lattice QCD calculation with realistic sea quark content of the D^+ meson decay constant f_{D^+}. We use the MILC Collaborations publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f_{D^+} = 201 +/- 3 +/- 17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f_{D_s} = 249 +/- 3 +/- 16 MeV for the D_s meson.
The hadro-quarkonium picture [S. Dubinskiy and M.B. Voloshin, Phys. Lett. B 666, 344 (2008)] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmonium-like X,Y,Z states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with $N_f = 2+1$ flavours of non-perturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about 0.0854 fm. We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favoured energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.
We present results for the mass of the eta-prime meson in the continuum limit for two-flavor lattice QCD, calculated on the CP-PACS computer, using a renormalization-group improved gauge action, and Sheikholeslami and Wohlerts fermion action with tadpole-improved csw. Correlation functions are measured at three values of the coupling constant beta corresponding to the lattice spacing a approx. 0.22, 0.16, 0.11 fm and for four values of the quark mass parameter kappa corresponding to mpi over mrho approx. 0.8, 0.75, 0.7 and 0.6. For each beta, kappa pair, 400-800 gauge configurations are used. The two-loop diagrams are evaluated using a noisy source method. We calculate eta-prime propagators using local sources, and find that excited state contributions are much reduced by smearing. A full analysis for the smeared propagators gives metaprime=0.960(87)+0.036-0.248 GeV, in the continuum limit, where the second error represents the systematic uncertainty coming from varying the functional form for chiral and continuum extrapolations.
We determine the leptonic decay constants in three flavor unquenched lattice QCD. We use O(a^2)-improved staggered light quarks and O(a)-improved charm quarks in the Fermilab heavy quark formalism. Our preliminary results, based upon an analysis at a single lattice spacing, are f_Ds = 263(+5-9)(+/-24) MeV and f_D = 225(+11-13)(+/-21) MeV. In each case, the first reported error is statistical while the is the combined systematic uncertainty.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا