Do you want to publish a course? Click here

Force Statistics and Correlations in Dense Granular Packings

229   0   0.0 ( 0 )
 Added by Thorsten Poeschel
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In dense, static, polydisperse granular media under isotropic pressure, the probability density and the correlations of particle-wall contact forces are studied. Furthermore, the probability density functions of the populations of pressures measured with different sized circular pressure cells is examined. The questions answered are: (i) What is the number of contacts that has to be considered so that the measured pressure lies within a certain error margin from its expectation value? (ii) What is the statistics of the pressure probability density as function of the size of the pressure cell? Astonishing non-random correlations between contact forces are evidenced, which range at least 10 to 15 particle diameter. Finally, an experiment is proposed to tackle and better understand this issue.



rate research

Read More

Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.
It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a range (plateau) of coarse graining scales for which the stress tensor field in a granular solid is nearly resolution independent, thereby enabling an `objective definition of this field. Expectedly, it is not the mere size of the the system but the (related) magnitudes of the gradients that determine the widths of the plateaus. Ensemble averaging (even over `small ensembles) extends the widths of the plateaus to sub-particle scales. The fluctuations within the ensemble are studied as well. Both the response to homogeneous forcing and to an external compressive localized load (and gravity) are studied. Implications to small solid systems and constitutive relations are briefly discussed.
For packings of hard but not perfectly rigid particles, the length scales that govern the packing geometry and the contact forces are well separated. This separation of length scales is explored in the force network ensemble, where one studies the space of allowed force configurations for a given, frozen contact geometry. Here we review results of this approach, which yields nontrivial predictions for the effect of packing dimension and anisotropy on the contact force distribution $P(f)$, the response to overall shear and point forcing, all of which can be studied in great numerical detail. Moreover, there are emerging analytical approaches that very effectively capture, for example, the form of force distributions.
Understanding granular materials aging poses a substantial challenge: Grain contacts form networks with complex topologies, and granular flow is far from equilibrium. In this letter, we experimentally measure a three-dimensional granular systems reversibility and aging under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains translations and three-dimensional rotations with accuracy sufficient to infer contact-point sliding and rolling. Our observations reveal unique roles played by three-dimensional rotations in granular flow, aging, and energy dissipation. First, we find that granular rotations dominate the bulk dynamics, penetrating more deeply into the granular material than translations do. Second, sliding and rolling do not exhibit aging across the experiment, unlike translations. Third, aging appears not to minimize energy dissipation, according to our experimental measurements of rotations, combined with soft-sphere simulations. The experimental tools, analytical techniques, and observations that we introduce expose all the degrees of freedom of the far-from-equilibrium dynamics of granular flow.
An initially homogeneous freely evolving fluid of inelastic hard spheres develops inhomogeneities in the flow field (vortices) and in the density field (clusters), driven by unstable fluctuations. Their spatial correlations, as measured in molecular dynamics simulations, exhibit long range correlations; the mean vortex diameter grows as the square root of time; there occur transitions to macroscopic shearing states, etc. The Cahn--Hilliard theory of spinodal decomposition offers a qualitative understanding and quantitative estimates of the observed phenomena. When intrinsic length scales are of the order of the system size, effects of physical boundaries and periodic boundaries (finite size effects in simulations) are important.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا