Mid-Infrared diagnostics of metal-rich HII regions from VLT and Spitzer Spectroscopy of Young Massive Stars in W31


Abstract in English

We present near-IR VLT/ISAAC and mid-IR Spitzer/IRS spectroscopy of the young massive cluster in the W31 star-forming region. H-band spectroscopy provides refined classifications for four cluster members O stars with respect to Blum et al. In addition, photospheric features are detected in the massive Young Stellar Object (mYSO) #26. Spectroscopy permits estimates of stellar temperatures and masses, from which a cluster age of ~0.6 Myr and distance of 3.3 kpc are obtained, in excellent agreement with Blum et al. IRS spectroscopy reveals mid-infrared fine structure line fluxes of [Ne II-III] and [S III-IV] for four O stars and five mYSOs. In common with previous studies, stellar temperatures of individual stars are severely underestimated from the observed ratios of fine-structure lines, despite the use of contemporary stellar atmosphere and photoionization models. We construct empirical temperature calibrations based upon the W31 cluster stars of known spectral type, supplemented by two inner Milky Way ultracompact (UC) HII regions whose ionizing star properties are established. Calibrations involving [NeIII] 15.5um/[NeII] 12.8um, [SIV] 10.5um/[NeII] 12.8um or [ArIII] 9.0um/[NeII] 12.8um have application in deducing the spectral types of early- to mid- O stars for other inner Milky Way compact and UCHII regions. Finally, evolutionary phases and timescales for the massive stellar content in W31 are discussed, due to the presence of numerous young massive stars at different formation phases in a `coeval cluster.

Download