Feedback-Optimized Operations with Linear Ion Crystals


Abstract in English

We report on transport operations with linear crystals of 40Ca+ ions by applying complex electric time-dependent potentials. For their control we use the information obtained from the ions fluorescence. We demonstrate that by means of this feedback technique, we can transport a predefined number of ions and also split and unify ion crystals. The feedback control allows for a robust scheme, compensating for experimental errors as it does not rely on a precisely known electrical modeling of the electric potentials in the ion trap beforehand. Our method allows us to generate a self-learning voltage ramp for the required process. With an experimental demonstration of a transport with more than 99.8 % success probability, this technique may facilitate the operation of a future ion based quantum processor.

Download