Do you want to publish a course? Click here

Engineered spin phase diagram of two interacting electrons in semiconductor nanowire quantum dots

207   0   0.0 ( 0 )
 Added by Yan-Ting Chen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin properties of two interacting electrons in a quantum dot (QD) embedded in a nanowire with controlled aspect ratio and longitudinal magnetic fields are investigated by using a configuration interaction (CI) method and exact diagonalization (ED) techniques. The developed CI theory based on a three-dimensional (3D) parabolic model provides explicit formulations of the Coulomb matrix elements and allows for straightforward and efficient numerical implementation. Our studies reveal fruitful features of spin singlet-triplet transitions of two electrons confined in a nanowire quantum dot (NWQD), as a consequence of the competing effects of geometry-controlled kinetic energy quantization, the various Coulomb interactions, and spin Zeeman energies. The developed theory is further employed to study the spin phase diagram of two quantum-confined electrons in the regime of cross over dimensionality, from quasi-two-dimensional (disk-like) QDs to finite one-dimensional (rod-like) QDs.



rate research

Read More

Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius $ >$ 100AA.
We observe a low-lying sharp spin mode of three interacting electrons in an array of nanofabricated AlGaAs/GaAs quantum dots by means of resonant inelastic light scattering. The finding is enabled by a suppression of the inhomogeneous contribution to the excitation spectra obtained by reducing the number of optically-probed quantum dots. Supported by configuration-interaction calculations we argue that the observed spin mode offers a direct probe of Stoner ferromagnetism in the simplest case of three interacting spin one-half fermions.
We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.
We investigate the appearance of pi lapses in the transmission phase theta of a two-level quantum dot with Coulomb interaction U. Using the numerical and functional renormalization group methods we study the entire parameter space for spin-polarized as well as spin-degenerate dots, modeled by spinless or spinful electrons, respectively. We investigate the effect of finite temperatures T. For small T and sufficiently small single-particle spacings delta of the dot levels we find pi phase lapses between two transmission peaks in an overwhelming part of the parameter space of the level-lead couplings. For large delta the appearance or not of a phase lapse between resonances depends on the relative sign of the level-lead couplings in analogy to the U=0 case. We show that this generic scenario is the same for spin-polarized and spin-degenerate dots. We emphasize that in contrast to dots with more levels, for a two-level dot with small delta and generic dot-lead couplings (that is up to cases with special symmetry) the universal phase lapse behavior is already established at U=0. The most important effect of the Coulomb interaction is to increase the separation of the transmission resonances. The relation of the appearance of phase lapses to the inversion of the population of the dot levels is discussed. For the spin-polarized case and low temperatures we compare our results to recent mean-field studies. For small delta correlations are found to strongly alter the mean-field picture.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a threshold-like enhancement or reduction of the local nuclear field by up to 3 Tesla can be generated by varying the intensity of light. The excitation power threshold for such a nuclear spin switch is found to depend on both external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of spin transfer from electrons to the nuclei of the dot.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا