Do you want to publish a course? Click here

Inter-Comparison and Validation of Geant4 Photon Interaction Models

236   0   0.0 ( 0 )
 Added by Markus Kuster
 Publication date 2009
  fields Physics
and research's language is English
 Authors M. Augelli




Ask ChatGPT about the research

A R&D project, named Nano5, has been recently launched to study an architectural design in view of addressing new experimental issues related to particle transport in high energy physics and other related physics disciplines with Geant4. In this frame, the first step has involved the redesign of the photon interaction models currently available in Geant4; this task has motivated a thorough investigation of the physics and computational features of these models, whose first results are presented here.



rate research

Read More

Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling.
Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Gean
The first results of a project in progress for the validation of the simulation of electron-positron pair production are presented. They concern the pair production cross section in a low energy range close to the production threshold. The results hint to effects due to the granularity of tabulated cross sections.
CREME96 and GEANT4 are two well known particle transport codes through matter in space science. We present a comparison between the proton fluxes outgoing from an aluminium target, obtained by using both tools. The primary proton flux is obtained by CREME96 only, covering an energy range from MeV to hundreds GeV with the same result in both cases. We studied different thickness targets and two different GEANT4 physics lists in order to show how the spectra of the outgoing proton fluxes are modified. Our findings show consistent agreement of simulation data by each tool, with regards both GEANT4 physics lists and every thickness target analysed.
Particle induced X-ray emission (PIXE) is a physical effect that is not yet adequately modelled in Geant4. The current status as in Geant4 9.2 release is reviewed and new developments are described. The capabilities of the software prototype are illustrated in application to the shielding of the X-ray detectors of the eROSITA telescope on the upcoming Spectrum-X-Gamma space mission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا