No Arabic abstract
I summarize the recent advances in determining the effects of self-annihilating WIMP dark matter on the modification of the recombination history, at times earlier than the formation of astrophysical objects. Depending on mass and self-annihilation cross section, WIMP DM can reproduce sizable amounts of the total free electron abundance at z > 6; as known, this affects the CMB temperature and polarization correlation spectra, and can be used to place stringent bounds in the particle mass vs cross-section plane. WMAP5 data already strongly disfavor the region capable to explain the recent cosmic positron and electrons anomalies in terms of DM annihilation, whereas in principle the Planck mission has the potential to see a signal produced by a candidate laying in that region, or from WIMPs with thermal annihilation cross-sections <sv>=3e-26 cm3/s and masses below 50 GeV.
The injection of secondary particles produced by Dark Matter (DM) annihilation at redshift 100<z<1000 affects the process of recombination, leaving an imprint on Cosmic Microwave Background (CMB) anisotropies. Here we provide a new assessment of the constraints set by CMB data on the mass and self-annihilation cross-section of DM particles. Our new analysis includes the most recent WMAP (7-year) and ACT data, as well as an improved treatment of the time-dependent coupling between the DM annihilation energy with the thermal gas. We show in particular that the improved measurement of the polarization signal places already stringent constraints on light DM particles, ruling out thermal WIMPs with mass less then about 10 GeV.
The Milky Ways dark matter halo is expected to host numerous low-mass subhalos with no detectable associated stellar component. Such subhalos are invisible unless their dark matter annihilates to visible states such as photons. One of the established methods for identifying candidate subhalos is to search for individual unassociated gamma-ray sources with properties consistent with the dark matter expectation. However, robustly ruling out an astrophysical origin for any such candidate is challenging. In this work, we present a complementary approach that harnesses information about the entire population of subhalos---such as their spatial and mass distribution in the Galaxy---to search for a signal of annihilating dark matter. Using simulated data, we show that the collective emission from subhalos can imprint itself in a unique way on the statistics of observed photons, even when individual subhalos may be too dim to be resolved on their own. Additionally, we demonstrate that, for the models we consider, the signal can be identified even in the face of unresolved astrophysical point-source emission of extragalactic and Galactic origin. This establishes a new search technique for subhalos that is complementary to established methods, and that could have important ramifications for gamma-ray dark matter searches using observatories such as the Fermi Large Area Telescope and the Cherenkov Telescope Array.
Several interesting Dark Matter (DM) models invoke a dark sector leading to two types of relic particles, possibly interacting with each other: non-relativistic DM, and relativistic Dark Radiation (DR). These models have interesting consequences for cosmological observables, and could in principle solve problems like the small-scale cold DM crisis, Hubble tension, and/or low $sigma_8$ value. Their cosmological behaviour is captured by the ETHOS parametrisation, which includes a DR-DM scattering rate scaling like a power-law of the temperature, $T^n$. Scenarios with $n=0$, $2$, or $4$ can easily be realised in concrete dark sector set-ups. Here we update constraints on these three scenarios using recent CMB, BAO, and high-resolution Lyman-$alpha$ data. We introduce a new Lyman-$alpha$ likelihood that is applicable to a wide range of cosmological models with a suppression of the matter power spectrum on small scales. For $n=2$ and $4$, we find that Lyman-$alpha$ data strengthen the CMB+BAO bounds on the DM-DR interaction rate by many orders of magnitude. However, models offering a possible solution to the missing satellite problem are still compatible with our new bounds. For $n=0$, high-resolution Lyman-$alpha$ data bring no stronger constraints on the interaction rate than CMB+BAO data, except for extremely small values of the DR density. Using CMB+BAO data and a theory-motivated prior on the minimal density of DR, we find that the $n=0$ model can reduce the Hubble tension from $4.1sigma$ to $2.7sigma$, while simultaneously accommodating smaller values of the $sigma_8$ and $S_8$ parameters hinted by cosmic shear data.
The cosmic electron and positron excesses have been explained as possible dark matter (DM) annihilation products. In this work we investigate the possible effects of such a DM annihilation scenario during the evolution history of the Universe. We first calculate the extragalactic $gamma$-ray background (EGRB), which is produced through the final state radiation of DM annihilation to charged leptons and the inverse Compton scattering between electrons/positrons and the cosmic microwave background. The DM halo profile and the minimal halo mass, which are not yet well determined from the current N-body simulations, are constrained by the EGRB data from EGRET and Fermi telescopes. Then we discuss the impact of such leptonic DM models on cosmic evolution, such as the reionization and heating of intergalactic medium, neutral Hydrogen 21 cm signal and suppression of structure formation. We show that the impact on the Hydrogen 21 cm signal might show interesting signatures of DM annihilation, but the influence on star formation is not remarkable. Future observations of the 21 cm signals could be used to place new constraints on the properties of DM.
Upcoming measurements of the highly redshifted 21cm line with next-generation radio telescopes such as HERA and SKA will provide the intriguing opportunity to probe dark matter (DM) physics during the Epoch of Reionization (EoR), Cosmic Dawn, and the Dark Ages. With HERA already under construction, there is a pressing need to thoroughly understand the impact of DM physics on the intergalactic medium (IGM) during these epochs. We present first results of a hydrodynamic simulation suite with $2 times 512^3$ particles in a $(100 h^{-1} text{Mpc})^3$ box with DM annihilation and baryonic cooling physics. We focus on redshift $z sim 11$, just before reionization starts in our simulations, and discuss the imprint of DM annihilation on the IGM and on structure formation. We find that whereas structure formation is not affected by thermal WIMPs heavier than $m_chi gtrsim 100 text{MeV}$, heating from $mathcal{O}$(GeV) DM particles may leave a significant imprint on the IGM that alters the 21cm signal. Cold gas in low density regions is particularly susceptible to the effects of DM heating. We note, however, that delayed energy deposition is not currently accounted for in our simulations.