Do you want to publish a course? Click here

Chiral and Diquark condensates at large magnetic field in two-flavor superconducting quark matter

145   0   0.0 ( 0 )
 Added by Tanumoy Mandal
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study the effect of a large magnetic field on the chiral and diquark condensates in a regime of moderately dense quark matter. Our focus is on the inter-dependence of the two condensates through non-perturbative quark mass and strong coupling effects, which we address in a 2-flavor Nambu-Jona-Lasinio (NJL) model. For magnetic fields $eBlesssim 0.01$ GeV$^2$ (corresponding to $Blesssim 10^{18}$G), our results agree qualitatively with the zero-field study of Huang et al., who found a mixed broken phase region where the chiral and superconducting gap are both non-zero. For $eBgtrsim 0.01$ GeV$^2$ and moderate diquark-to-scalar coupling ratio $G_D/G_S$, we find that the chiral and superconducting transitions become weaker but with little change in either transition density. For large $G_D/G_S$ however, such a large magnetic field disrupts the mixed broken phase region and changes a smooth crossover found in the zero-field case to a first-order transition at neutron star interior densities.



rate research

Read More

We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in presence of constant external magnetic field. Within the Nambu-Jona-Lasinio model, by tuning the diquark coupling strength, we study the interdependent evolution of the quark Bardeen-Cooper-Schrieffer gap and dynamical mass as functions of temperature and magnetic field. We find that magnetic field $B gtrsim 0.02$ GeV$^2$ ($10^{18}$ G) leads to anomalous temperature behavior of the gap in the gapless 2SC phase (moderately strong coupling), reminiscent of previous results in the literature found in the limit of weak coupling without magnetic field. The 2SC gap in the strong coupling regime is abruptly quenched at ultrahigh magnetic field due to the mismatched Fermi surfaces of up and down quarks imposed by charge neutrality and oscillation of the gap due to Landau level quantization. The dynamical quark mass also displays strong oscillation and magnetic catalysis at high magnetic field, although the latter effect is tempered by nonzero temperature. We discuss the implications for newly born compact stars with superconducting quark cores.
Because the properties of the QCD phase transition and the chiral magnetic effect (CME) depend on the number of quark flavors ($N_{f}$) and quark mass, relativistic heavy-ion collisions provide a natural environment to investigate the flavor features if quark deconfinement occurs. We introduce an initial two-flavor or three-flavor dipole charge separation into a multiphase transport (AMPT) model to investigate the flavor dependence of the CME. By taking advantage of the recent ALICE data of charge azimuthal correlations with identified hadrons, we attempt to disentangle two-flavor and three-flavor CME scenarios in Pb+Pb collisions at 2.76 TeV. We find that the experimental data show a certain potential to distinguish the two scenarios, therefore we further suggest to collect more data to clarify the possible flavor dependence in future experiments.
301 - Jia-Rui Guo 2021
In this paper, we suggest that the process in quark nova explosion may exist widely in various kinds of supernova, although it only happens in a small part in the core in most cases. And the contribution to the energy releasing of whole supernova explosion can also be provided by QCD interacting term. In this way we derive a general equation of energy quantity to be released in quark nova process related to several parameters. After quark nova explosion process, the remnant can be a quark star, or a neutron star with quark matter core if this process only happens in a small part inside the compact star instead of a full quark nova. We will also use a more generalized approach to analyse the strangelets released from quark nova and will draw a possible interpretation of why effects caused by strangelets have not been observed yet. Our result suggests that the ordinary matter can only spontaneously transform into strange quark matter by crushing them into high pressure under the extreme condition in compact star, although generally the reaction would really be exergonic.
96 - M. Inui , H. Kohyama , A. Niegawa 2007
We study the phase structure of the unpolarized and polarized two-flavor quark matters at zero and finite temperatures within the Nambu--Jona-Lasinio (NJL) model. We focus on the region, which includes the coexisting phase of quark-antiquark and diquark condensates. Generalizing the NJL model so as to describe the polarized quark matter, we compute the thermodynamic potential as a function of the quark chemical potential ($mu$), the temperature ($T$), and the polarization parameter. The result heavily depends on the ratio $G_D / G_S$, where $G_S$ is the quark-antiquark coupling constant and $G_D$ is the diquark coupling constant. We find that, for small $G_D / G_S$, the ferromagnetic phase is energetically favored over the paramagnetic phase. On the other hand, for large $G_D / G_S$, there appears the window in the ($mu, T$)-plane, in which the paramagnetic phase is favored.
Applying the Hellmann-Feynman theorem to a charged pion gas, the quark and gluon condensates at low isospin density are determined by precise pion properties. At intermediate density around $ f_pi^2m_pi$, from both the estimation for the dilute pion gas and the calculation with Nambu--Jona-Lasinio model, the quark condensate is strongly and monotonously suppressed, while the gluon condensate is enhanced and can be larger than its vacuum value. This unusual behavior of the gluon condensate is universal for Bose condensed matter of mesons. Our results can be tested by lattice calculations at finite isospin density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا