Do you want to publish a course? Click here

Emission line taxonomy and the nature of AGN-looking galaxies in the SDSS

161   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive spectroscopic surveys like the SDSS have revolutionized the way we study AGN and their relations to the galaxies they live in. A first step in any such study is to define samples of different types of AGN on the basis of emission line ratios. This deceivingly simple step involves decisions on which classification scheme to use and data quality censorship. Galaxies with weak emission lines are often left aside or dealt with separately because one cannot fully classify them onto the standard Star-Forming, Seyfert of LINER categories. This contribution summarizes alternative classification schemes which include this very numerous population. We then study how star-formation histories and physical properties of the hosts vary from class to class, and present compelling evidence that the emission lines in the majority of LINER-like systems in the SDSS are not powered by black-hole accretion. The data are fully consistent with them being galaxies whose old stars provide all the ionizing power needed to explain their line ratios and luminosities. Such retired galaxies deserve a place in the emission line taxonomy.



rate research

Read More

119 - R. Coziol 2011
We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. All these galaxies are spiral like and show some kind of nuclear activity. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) is relatively high, amounting to 64% of the galaxies. There is a definite trend for the NLAGNs to appear in early-type spirals, while the star forming galaxies and TOs are found in later-type spirals. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torre-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. Consistent with this interpretation, we establish a strong connection between the astration rate--the efficiency with which the gas is transformed into stars--the AGN phenomenon, and the gravitational binding energy of the galaxies: the higher the binding energy, the higher the astration rate and the higher the probability to find an AGN. The NLAGNs in our sample are consistent with scaled-down or powered-dow
87 - B. Balmaverde 2012
Our aim is to explore the nature of emission line galaxies by combining high-resolution observations obtained in different bands to understand which objects are powered by an Active Galactic Nucleus(AGN). From the spectroscopic Palomar survey of nearby bright galaxies, we selected a sample of 18 objects observed with HST, Chandra, and VLA. No connection is found between X-ray and emission line luminosities from ground-based data, unlike what is found for brighter AGN. Conversely, a strong correlation emerges when using the HST spectroscopic data, which are extracted on a much smaller aperture. This suggests that the HST data better isolate the AGN component when one is present, while ground-based line measurements are affected by diffuse emission from the host galaxies. The sample separates into two populations. The 11 objects belonging to the first class have an equivalent width of the [OIII] emission line measured from HST data EW([OIII])>~2 A and are associated with an X-ray nuclear source; in the second group we find seven galaxies with EW([OIII])<~1 A that generally do not show any emission related to an active nucleus (emission lines, X-ray, or radio sources). This latter group includes about half of the Low Ionization Nuclear Emission-line region (LINERs) or transition galaxies of the sample, all of which are objects of low [OIII] line luminosity (<~1E38 erg s-1) and low equivalent width (<~1 A) in ground-based observations. These results strengthen the suggestion that the EW([OIII]) value is a robust predictor of the nature of an emission line galaxy.
126 - D. Thomas 2012
We perform a spectroscopic analysis of 492,450 galaxy spectra from the first two years of observations of the Sloan Digital Sky Survey-III/Baryonic Oscillation Spectroscopic Survey (BOSS) collaboration. This data set has been released in the ninth SDSS data release, the first public data release of BOSS spectra. We show that the typical signal-to-noise ratio of BOSS spectra is sufficient to measure stellar velocity dispersion and emission line fluxes for individual objects. The typical velocity dispersion of a BOSS galaxy is 240 km/s, with an accuracy of better than 30 per cent for 93 per cent of BOSS galaxies. The distribution in velocity dispersion is redshift independent between redshifts 0.15 and 0.7, which reflects the survey design targeting massive galaxies with an approximately uniform mass distribution in this redshift interval. The majority of BOSS galaxies lack detectable emission lines. We analyse the emission line properties and present diagnostic diagrams using the emission lines [OII], Hbeta, [OIII], Halpha, and [NII] (detected in about 4 per cent of the galaxies). We show that the emission line properties are strongly redshift dependent and that there is a clear correlation between observed frame colours and emission line properties. Within in the low-z sample around 0.15<z<0.3, half of the emission-line galaxies have LINER-like emission line ratios, followed by Seyfert-AGN dominated spectra, and only a small fraction of a few per cent are purely star forming galaxies. AGN and LINER-like objects, instead, are less prevalent in the high-z sample around 0.4<z<0.7, where more than half of the emission line objects are star forming. This is a pure selection effect caused by the non-detection of weak Hbeta emission lines in the BOSS spectra. Finally, we show that star forming, AGN and emission line free galaxies are well separated in the g-r vs r-i target selection diagram.
186 - P. Kharb 2021
Double-peaked emission line AGN (DPAGN) have been regarded as binary black hole candidates. We present here results from parsec-scale radio observations with the Very Long Baseline Array (VLBA) of five DPAGN belonging to the KISSR sample of emission-line galaxies. This work concludes our pilot study of nine type 2 Seyfert and LINER DPAGN from the KISSR sample. In the nine sources, dual compact cores are only detected in the offset AGN, KISSR 102. The overall incidence of jets however, in the eight sources detected with the VLBA, is $ge$60%. We find a difference in the missing flux density going from the Very Large Array (VLA) to VLBA scales between Seyferts and LINERs, with LINERs showing less missing flux density on parsec-scales. Using the emission-line modeling code, MAPPINGS III, we find that the emission lines are likely to be influenced by jets in 5/9 sources. Jet-medium interaction is the likely cause of the emission-line splitting observed in the SDSS spectra of these sources. Jets in radio-quiet AGN are therefore energetically capable of influencing their parsec- and kpc-scale environments, making them agents of radio AGN feedback, similar to radio-loud AGN.
We investigate the physical cause of the great range in the ionization level seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field independent component analysis identifies examples of individual SDSS galaxies whose spectra are not dominated by emission due to star formation (SF), which we designate as AGN. We assembled high S/N ratio composite spectra of a sequence of these AGN defined by the ionization level of their narrow-line regions (NLR), extending down to very low-ionization cases. We used a local optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN sequence. These included the weak lines that can be measured only in the co-added spectra, providing consistency checks on strong line diagnostics. After integrating over a wide range of radii and densities our models indicate that the radial extent of the NLR is the major parameter in determining the position of high to moderate ionization AGN along our sequence, providing a physical interpretation for their systematic variation. Higher ionization AGN contain optimally emitting clouds that are more concentrated towards the central continuum source than in lower ionization AGN. Our LOC models indicate that for the objects that lie on our AGN sequence, the ionizing luminosity is anticorrelated with the NLR ionization level, and hence anticorrelated with the radial concentration and physical extent of the NLR. A possible interpretation that deserves further exploration is that the ionization sequence might be an age sequence where low ionization objects are older and have systematically cleared out their central regions by radiation pressure. We consider that our AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue that while many galaxies do have this type of composite spectra, our AGN sequence appears to be a special set of objects with negligible SF excitation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا