No Arabic abstract
In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartans homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.
In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwells equations that automatically preserve key symmetries and invariants. In doing so, we demonstrate several new results, which apply both to some well-established numerical methods and to new methods introduced here. First, we show that Yees finite-difference time-domain (FDTD) scheme, along with a number of related methods, are multisymplectic and derive from a discrete Lagrangian variational principle. Second, we generalize the Yee scheme to unstructured meshes, not just in space but in 4-dimensional spacetime. This relaxes the need to take uniform time steps, or even to have a preferred time coordinate at all. Finally, as an example of the type of methods that can be developed within this general framework, we introduce a new asynchronous variational integrator (AVI) for solving Maxwells equations. These results are illustrated with some prototype simulations that show excellent energy and conservation behavior and lack of spurious modes, even for an irregular mesh with asynchronous time stepping.
We review the list of non-degenerate invariant (super)symmetric bilinear forms (briefly: NIS) on the following simple (relatives of) Lie (super)algebras: (a) with symmetrizable Cartan matrix of any growth, (b) with non-symmetrizable Cartan matrix of polynomial growth, (c) Lie (super)algebras of vector fields with polynomial coefficients, (d) stringy a.k.a. superconformal superalgebras, (e) queerifications of simple restricted Lie algebras. Over algebraically closed fields of positive characteristic, we establish when the deform (i.e., the result of deformation) of the known finite-dimensional simple Lie (super)algebra has a NIS. Amazingly, in most of the cases considered, if the Lie (super)algebra has a NIS, its deform has a NIS with the same Gram matrix after an identification of bases of the initial and deformed algebras. We do not consider odd parameters of deformations. Closely related with simple Lie (super)algebras with NIS is the notion of doubly extended Lie (super)algebras of which affine Kac--Moody (super)algebras are the most known examples.
We present a super-high-efficiency approximate computing scheme for series sum and discrete Fourier transform. The summation of a series sum or a discrete Fourier transform is approximated by summing over part of the terms multiplied by corresponding weights. The calculation is valid for the function under the transform being piecewise smooth in the continuum variable. The scheme reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency without losing accuracy. By comparing with the known results of examples, we show the accuracy and the efficiency of the scheme. The efficiency can be higher than $10^6$ for the examples.
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on the lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localised periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.