Retired A Stars and Their Companions. III. Comparing the Mass-Period Distributions of Planets Around A-Type Stars and Sun-Like Stars


Abstract in English

We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass subgiants (1.5 < M*/Msun < 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26 (+9,-8)%, which is significantly higher than the ~5-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} MJup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around intermediate-mass stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN ~ M^{alpha}P^{beta} dlnM dlnP, the observed planet frequency, and the detection limits we derived. We find that the values of alpha and beta for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4 sigma level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (~ 50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets.

Download