The Large Underground Xenon (LUX) dark matter search experiment is currently being deployed at the Homestake Laboratory in South Dakota. We will highlight the main elements of design which make the experiment a very strong competitor in the field of direct detection, as well as an easily scalable concept. We will also present its potential reach for supersymmetric dark matter detection, within various timeframes ranging from 1 year to 5 years or more.
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV/c^2, WIMP-nucleon spin-independent cross sections above 2.2e-46 cm^2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1e-46 cm^2 at 50 GeV/c^2.
The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a Bremsstrahlung photon or a so-called Migdal electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.4-5 GeV/c$^2$ using 1.4$times10^4$ kg$cdot$day of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously.
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress radioactive backgrounds, having an unrivaled sensitivity to WIMPs with masses $<$6 GeV/$c^2$. Early results motivated the construction of a 100 g detector, DAMIC100, currently being installed at SNOLAB. This contribution discusses the installation progress, new calibration efforts near the threshold, a preliminary result with 2014 data, and the prospects for physics results after one year of data taking.
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6e-46 cm^2 on the spin-independent WIMP-nucleon elastic scattering cross section based on a 1.4e4 kg*day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUXs first science run. Limits are placed on each coupling as a function of WIMP mass.
We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our understanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-ray spectrometer in combination with a dedicated observation program. The proposed mission will provide unique limits on the mixing angle and mass of neutral leptons, right handed partners of neutrinos, which are important Dark Matter candidates. The existence of these particles is strongly motivated by observed neutrino flavor oscillations and the problem of baryon asymmetry of the Universe. In super-WIMP models, the details of the formation of the cosmic web are different from those of LambdaCDM. The proposed mission will, in addition to the search for decaying Dark Matter, provide crucial insight into the nature of DM by studying the structure of the cosmic web. This will be done by searching for missing baryons in emission, and by using gamma-ray bursts as backlight to observe the warm-hot intergalactic media in absorption.