Do you want to publish a course? Click here

Progress and Validation of Geant4 Based Radioactive Decay Simulation Using the Examples of Simbol-X and IXO

120   0   0.0 ( 0 )
 Added by Markus Kuster
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The anticipated high sensitivity and the science goals of the next generation X-ray space missions, like the International X-ray Observatory or Simbol-X, rely on a low instrumental background, which in turn requires optimized shielding concepts. We present Geant4 based simulation results on the IXO Wide Field Imager cosmic ray proton induced background in comparison with previous results obtained for the Simbol-X LED and HED focal plane detectors. Our results show that an improvement in mean differential background flux compared to actually operating X-ray observatories may be feasible with detectors based on DEPFET technology. In addition we present preliminary results concerning the validation of Geant4 based radioactive decay simulation in space applications as a part of the Nano5 project.



rate research

Read More

Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling.
212 - S. Hauf 2010
We present {gamma} spectroscopy validation measurements for the Geant4 radioactive decay simulation for a selected range of isotopes using a simple experimental setup. Using these results we point out problems in the decay simulation and where they may originate from.
Low energy protons (< 300 keV) can enter the field of view of X-ray space telescopes, scatter at small incident angles, and deposit energy on the detector, causing intense background flares at the focal plane or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance of future X-ray telescopes as the ESA ATHENA mission. For the first time the Remizovich model, in the approximation of no energy losses, is implemented top of the Geant4 release 10.2. Both the new scattering physics and the built-in Coulomb scattering are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funneling, and affirm that Coulomb single scattering can represent, until further measurements, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.
Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Gean
To characterize the signals registered by the different types of water Cherenkov detectors (WCD) used by the Latin American Giant Observatory (LAGO) Project, it is necessary to develop detailed simulations of the detector response to the flux of secondary particles at the detector level. These particles are originated during the interaction of cosmic rays with the atmosphere. In this context, the LAGO project aims to study the high energy component of gamma rays bursts (GRBs) and space weather phenomena by looking for the solar modulation of galactic cosmic rays (GCRs). Focus in this, a complete and complex chain of simulations is being developed that account for geomagnetic effects, atmospheric reaction and detector response at each LAGO site. In this work we shown the first steps of a GEANT4 based simulation for the LAGO WCD, with emphasis on the induced effects of the detector internal diffusive coating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا