We explore the possibilities of using the fermionic functional renormalization group to compute the phase diagram of systems with competing instabilities. In order to overcome the ubiquituous divergences encountered in RG flows, we propose to use symmetry breaking counterterms for each instability, and employ a self-consistency condition for fixing the counterterms. As a validity check, results are compared to known exact results for the case of one-dimensional systems. We find that whilst one-dimensional peculiarities, in particular algebraically decaying correlation functions, can not be reproduced, the phase boundaries are reproduced accurately, encouraging further explorations for higher-dimensional systems.