No Arabic abstract
In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles and jet manifolds associated to the biomechanical configuration manifold. We derive time-dependent, dissipative, Hamiltonian equations and the fitness evolution equation for the general time-dependent human biomechanical system. Keywords: Human biomechanics, covariant force law, configuration manifold, jet manifolds, time-dependent Hamiltonian dynamics
In this paper we propose the time & fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles, jet manifolds, polysymplectic geometry and Hamiltonian connections. In this way we derive time-dependent dissipative Hamiltonian equations and the fitness evolution equation for the general time & fitness-dependent human biomechanical system. Keywords: Human biomechanics, configuration bundle, Hamiltonian connections, jet manifolds, time & fitness-dependent dynamics
In this paper we propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation. Keywords: Human time-dependent biomechanics, configuration bundle, jet spaces, Ricci flow
We propose the time-dependent generalization of an `ordinary autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds derived from the extended musculo-skeletal configuration manifold. The corresponding Riemannian geometrical evolution follows the Ricci flow diffusion. In particular, we show that the exponential-like decay of total biomechanical energy (due to exhaustion of biochemical resources) is closely related to the Ricci flow on the biomechanical configuration manifold. Keywords: Time-dependent biomechanics, extended configuration manifold, configuration bundle, jet manifolds, Ricci flow diffusion
In this paper we present the time-dependent generalization of an ordinary autonomous human musculo-skeletal biomechanics. We start with the configuration manifold of human body, given as a set of its all active degrees of freedom (DOF). This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. On this extended configuration space we develop time-dependent biomechanical Lagrangian dynamics, using derived jet spaces of velocities and accelerations, as well as the underlying geometric evolution of the mass-inertia matrix. Keywords: Human time-dependent biomechanics, configuration manifold, jet spaces, geometric evolution
In the spirit of recent work of Harada-Kaveh and Nishinou-Nohara-Ueda, we study the symplectic geometry of Popovs horospherical degenerations of complex algebraic varieties with the action of a complex linearly reductive group. We formulate an intrinsic symplectic contraction of a Hamiltonian space, which is a surjective, continuous map onto a new Hamiltonian space that is a symplectomorphism on an explicitly defined dense open subspace. This map is given by a precise formula, using techniques from the theory of symplectic reduction and symplectic implosion. We then show, using the Vinberg monoid, that the gradient-Hamiltonian flow for a horospherical degeneration of an algebraic variety gives rise to this contraction from a general fiber to the special fiber. We apply this construction to branching problems in representation theory, and finally we show how the Gelfand-Tsetlin integrable system can be understood to arise this way.