No Arabic abstract
The polarization entanglement photon pairs generated from the biexciton cascade decay in a single semiconductor quantum dot is corrupted by the position-dependent (time-dependent) phase difference of the two polarization mode due to the fine structure splitting. We show that, by taking voltage ramping to an electro-optic modulator, such phase-difference can be removed. In our first proposed set-up, two photons are sent to two separate Pockels cell under reverse voltage ramping, as a result, the position-dependent phase difference between the two polarization mode is removed in the outcome state. In our second proposed set-up, the polarization of the first photon is flipped and then both photons fly into the same Pokels cell. Since we only need to separate the two photons rather than separate the two polarization modes, our schemes are robust with respect to fluctuations of the optical paths.
Quantum information protocols require various types of entanglement, such as Einstein-Podolsky-Rosen (EPR), Greenberger-Horne-Zeilinger (GHZ), and cluster states. In optics, on-demand preparation of these states has been realized by squeezed light sources, but such experiments require different optical circuits for different entangled states, thus lacking versatility. Here we demonstrate an on-demand entanglement synthesizer which programmably generates all these entangled states from a single squeezed light source. This is achieved by developing a loop-based circuit which is dynamically controllable at nanosecond timescale. We verify the generation of 5 different small-scale entangled states as well as a large-scale cluster state containing more than 1000 modes without changing the optical circuit itself. Moreover, this circuit enables storage and release of one part of the generated entangled state, thus working as a quantum memory. This programmable loop-based circuit should open a way for a more general entanglement synthesizer and a scalable quantum processor.
Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of non-classical light can be used for entanglement swapping, but quantum communication technologies with device-independent functionalities demand for push-button operation that, in principle, can be implemented using single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent requirements on the efficiency and purity of generation of entangled states. Here we tackle this challenge and show that pairs of polarization-entangled photons generated on-demand by a GaAs quantum dot can be used to successfully demonstrate all-photonic entanglement swapping. Moreover, we develop a theoretical model that provides quantitative insight on the critical figures of merit for the performance of the swapping procedure. This work shows that solid-state quantum emitters are mature for quantum networking and indicates a path for scaling up.
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to $0.95 pm 0.01$ and post-selected photon indistinguishabilities of up to $0.93 pm 0.01$, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations as well as time resolved Hong-Ou-Mandel interferences facilitate innovative methods that determine quantities such as photon extraction and excitation efficiencies as well as pure dephasing directly - opposed to commonly employed indirect techniques.
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at $780,$nm are generated on-demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multi-photon emission probability ($g^{2}(0)sim,0.10-0.15$) at a generation rate up to $10,$MHz. We observe Raman photons with linewidths as low as $200,$MHz, narrow compared to the $1.1,$GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of $.99$ using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping $etc.$, can be realized with the aid of single-qubit operations.