No Arabic abstract
Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. Using exact diagonalization techniques, we investigate the zero-bias and zero-temperature conductance through $pi$-conjugated annulene molecules (modeled by the Pariser-Parr-Pople and Hubbard Hamiltonians) weakly coupled to two leads. We analyze the conductance for different source-drain configurations, finding an important reduction for certain transmission channels and for particular geometries as a consequence of destructive quantum interference between states with definite momenta. When translational symmetry is broken by an external perturbation we find an abrupt increase of the conductance through those channels. Previous studies concentrated on the effect at the Fermi energy, where this effect is very small. By analysing the effect of symmetry breaking on the main transmission channels we find a much larger response thus leading to the possibility of a larger switching of the conductance through single molecules.
The antiferromagnetic molecular wheel Fe18 of eighteen exchange-coupled Fe(III) ions has been studied by measurements of the magnetic torque, the magnetization, and the inelastic neutron scattering spectra. The combined data show that the low-temperature magnetism of Fe18 is very accurately described by the Neel-vector tunneling (NVT) scenario, as unfolded by semiclassical theory. In addition, the magnetic torque as a function of applied field exhibits oscillations that reflect the oscillations in the NVT tunnel splitting with field due to quantum phase interference.
The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.
Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. using a carbon nanotube contacted by an STM tip [Nature {bf 432}, 371 (2004)], where negative differential conductance of the breathing mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A half-shuttle mechanism is also introduced. A quantum kinetic formulation allows to derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle coupling, negative differential conductance is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in absence of a gate, the floating level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own.
We demonstrate that hexagonal graphene nanoflakes with zigzag edges display quantum interference (QI) patterns analogous to benzene molecular junctions. In contrast with graphene sheets, these nanoflakes also host magnetism. The cooperative effect of QI and magnetism enables spin-dependent quantum interference effects that result in a nearly complete spin polarization of the current, and holds a huge potential for spintronic applications. We understand the origin of QI in terms of symmetry arguments, which show the robustness and generality of the effect. This also allows us to devise a concrete protocol for the electrostatic control of the spin polarization of the current by breaking the sublattice symmetry of graphene, by deposition on hexagonal boron nitride, paving the way to switchable spin-filters. Such a system benefits of all the extraordinary conduction properties of graphene, and at the same time, it does not require any external magnetic field to select the spin polarization, as magnetism emerges spontaneously at the edges of the nanoflake.
We study numerically the universal conductance of Luttinger liquids wire with a single impurity via the Muti-scale Entanglement Renormalization Ansatz (MERA). The scale invariant MERA provides an efficient way to extract scaling operators and scaling dimensions for both the bulk and the boundary conformal field theories. By utilizing the key relationship between the conductance tensor and ground-state correlation function, the universal conductance can be evaluated within the framework of the boundary MERA. We construct the boundary MERA to compute the correlation functions and scaling dimensions for the Kane-Fisher fixed points by modeling the single impurity as a junction (weak link) of two interacting wires. We show that the universal behavior of the junction can be easily identified within the MERA and argue that the boundary MERA framework has tremendous potential to classify the fixed points in general multi-wire junctions.