Do you want to publish a course? Click here

Directional discrepancy in two dimensions

402   0   0.0 ( 0 )
 Added by Dmitriy Bilyk
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.



rate research

Read More

We establish the sharp growth rate, in terms of cardinality, of the $L^p$ norms of the maximal Hilbert transform $H_Omega$ along finite subsets of a finite order lacunary set of directions $Omega subset mathbb R^3$, answering a question of Parcet and Rogers in dimension $n=3$. Our result is the first sharp estimate for maximal directional singular integrals in dimensions greater than 2. The proof relies on a representation of the maximal directional Hilbert transform in terms of a model maximal operator associated to compositions of two-dimensional angular multipliers, as well as on the usage of weighted norm inequalities, and their extrapolation, in the directional setting.
We prove an optimal bound in twelve dimensions for the uncertainty principle of Bourgain, Clozel, and Kahane. Suppose $f colon mathbb{R}^{12} to mathbb{R}$ is an integrable function that is not identically zero. Normalize its Fourier transform $widehat{f}$ by $widehat{f}(xi) = int_{mathbb{R}^d} f(x)e^{-2pi i langle x, xirangle}, dx$, and suppose $widehat{f}$ is real-valued and integrable. We show that if $f(0) le 0$, $widehat{f}(0) le 0$, $f(x) ge 0$ for $|x| ge r_1$, and $widehat{f}(xi) ge 0$ for $|xi| ge r_2$, then $r_1r_2 ge 2$, and this bound is sharp. The construction of a function attaining the bound is based on Viazovskas modular form techniques, and its optimality follows from the existence of the Eisenstein series $E_6$. No sharp bound is known, or even conjectured, in any other dimension. We also develop a connection with the linear programming bound of Cohn and Elkies, which lets us generalize the sign pattern of $f$ and $widehat{f}$ to develop a complementary uncertainty principle. This generalization unites the uncertainty principle with the linear programming bound as aspects of a broader theory.
Let A_N be an N-point distribution in the unit square in the Euclidean plane. We consider the Discrepancy function D_N(x) in two dimensions with respect to rectangles with lower left corner anchored at the origin and upper right corner at the point x. This is the difference between the actual number of points of A_N in such a rectangle and the expected number of points - N x_1x_2 - in the rectangle. We prove sharp estimates for the BMO norm and the exponential squared Orlicz norm of D_N(x). For example we show that necessarily ||D_N||_(expL^2) >c(logN)^(1/2) for some aboslute constant c>0. On the other hand we use a digit scrambled version of the van der Corput set to show that this bound is tight in the case N=2^n, for some positive integer n. These results unify the corresponding classical results of Roth and Schmidt in a sharp fashion.
Celebrated theorems of Roth and of Matouv{s}ek and Spencer together show that the discrepancy of arithmetic progressions in the first $n$ positive integers is $Theta(n^{1/4})$. We study the analogous problem in the $mathbb{Z}_n$ setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in $mathbb{Z}_n$ for all positive integer $n$. We further determine up to a constant factor the discrepancy of arithmetic progressions in $mathbb{Z}_n$ for many $n$. For example, if $n=p^k$ is a prime power, then the discrepancy of arithmetic progressions in $mathbb{Z}_n$ is $Theta(n^{1/3+r_k/(6k)})$, where $r_k in {0,1,2}$ is the remainder when $k$ is divided by $3$. This solves a problem of Hebbinghaus and Srivastav.
We establish the sharp growth order, up to epsilon losses, of the $L^2$-norm of the maximal directional averaging operator along a finite subset $V$ of a polynomial variety of arbitrary dimension $m$, in terms of cardinality. This is an extension of the works by Cordoba, for one-dimensional manifolds, Katz for the circle in two dimensions, and Demeter for the 2-sphere. For the case of directions on the two-dimensional sphere we improve by a factor of $sqrt{log N}$ on the best known bound, due to Demeter, and we obtain a sharp estimate for our model operator. Our results imply new $L^2$-estimates for Kakeya-type maximal functions with tubes pointing along polynomial directions. Our proof technique is novel and in particular incorporates an iterated scheme of polynomial partitioning on varieties adapted to directional operators, in the vein of Guth, Guth-Katz, and Zahl.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا