Do you want to publish a course? Click here

Metal Enrichment via Ram Pressure Stripping in the IGM of the Compact Galaxy Group RGH 80

124   0   0.0 ( 0 )
 Added by Junhua Gu
 Publication date 2009
  fields Physics
and research's language is English
 Authors Haijuan Cui




Ask ChatGPT about the research

By creating and analyzing the two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with the high-quality Chandra data, we detect a high-abundance ($simeq 0.7$ $Z_odot$) arc, where the metal abundance is significantly higher than the surrounding regions by $simeq 0.3$ Z_odot$. This structure shows tight spatial correlations with the member galaxy PGC 046529, as well as with the arm-like feature identified on the X-ray image in the previous work of Randall et al. (2009). Since no apparent signature of AGN activity is found associated with PGC 046529 in multi-band observations, and the gas temperature, metallicity, and mass of the high-abundance arc resemble those of the ISM of typical early-type galaxies, we conclude that this high-abundance structure is the remnant of the ISM of PGC 046529, which was stripped out of the galaxy by ram pressure stripping due to the motion of PGC 046529 in RGH 80. This novel case shows that ram pressure stripping can work efficiently in the metal enrichment process in galaxy groups, as it can in galaxy clusters.



rate research

Read More

133 - W. Domainko 2005
We investigate the impact of galactic mass loss triggered by ram-pressure stripping of cluster galaxies on the evolution of the intra-cluster medium (ICM). We use combined N-body and hydrodynamic simulations together with a phenomenological galaxy formation model and a prescription of the effect of ram-pressure stripping on the galaxies. We analyze the effect of galaxy -- ICM interaction for different model clusters with different masses and different merger histories. Our simulations show that ram-pressure stripping can account for ~ 10% of the overall observed level of enrichment in the ICM within a radius of 1.3 Mpc. The efficiency of metal ejection of cluster galaxies depends at the first few Gyr of the simulation mainly on the cluster mass and is significantly increased during major merger events. Additionally we show that ram-pressure stripping is most efficient in the center of the galaxy cluster and the level of enrichment drops quite fast at larger radii. We present emission weighted metallicity maps of the ICM which can be compared with X-ray observations. The resulting distribution of metals in the ICM shows a complex pattern with stripes and plumes of metal rich material. The metallicity maps can be used to trace the present and past interactions between the ICM and cluster galaxies.
259 - W. Domainko 2004
We present numerical simulations of the dynamical and chemical evolution of galaxy clusters. X-ray spectra show that the intra-cluster medium contains a significant amount of metals. As heavy elements are produced in the stars of galaxies material from the galaxies must have been expelled to enrich the ambient medium. We have performed hydrodynamic simulations investigating various processes. In this presentation we show the feedback from gas which is stripped from galaxies by ram-pressure stripping. The efficiency, resulting spatial distribution of the metals and the time dependency of this enrichment process on galaxy cluster scale is shown.
127 - E. Roediger 2009
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spiral galaxies: this scenario is a good candidate to explain the differences observed between cluster spirals in the nearby universe and their field counterparts. Thus, ram pressure stripping of disk galaxies in clusters has been studied intensively during the last decade. I review advances made in this area, concentrating on theoretical work, but continuously comparing to observations.
We present an X-ray study of the galaxy group RGH 80, observed by XMM-Newton. The X-ray emission of the gas is detected out to ~ 462h^{-1}_{50} kpc, corresponding to ~ 0.45 r_{200}. The group is relatively gas rich and luminous with respect to its temperature of 1.01 +/- 0.01 keV. Using the deprojected spectral analysis, we find that the temperature peaks at ~ 1.3 keV around 0.11r_{200}, and then decreases inwards to 0.83 keV at the center and outwards to ~ 70% of the peak value at large radii. Within the central ~ 60 kpc of the group where the gas cooling time is less than the Hubble time, two-temperature model with temperatures of 0.82 and 1.51 keV and the Galactic absorption gives the best fit of the spectra, with ~ 20% volume occupied by the cool component. We also derive the gas entropy distribution, which is consistent with the prediction of cooling and/or internal heating models. Furthermore, the abundances of O, Mg, Si, S, and Fe decrease monotonically with radius. With the observed abundance ratio pattern, we estimate that ~ 85% or ~ 72% of the iron mass is contributed by SN Ia, depending on the adopted SN II models.
124 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inclination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا