A High-Pressure Polarized $^3$He Gas Target for Nuclear Physics Experiments Using A Polarized Photon Beam


Abstract in English

Following the first experiment on three-body photodisintegration of polarized $^3$He utilizing circularly polarized photons from High Intensity Gamma Source (HI$gamma$S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized $^3$He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam induced background. The target is based on the technique of spin-exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is $sim$62% determined from both NMR-AFP and EPR polarimetry. The $X$ parameter is estimated to be $sim0.06$ and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 $^3$He target cell used previously at HI$gamma$S. This is the first time that sol-gel coating technique has been used in a polarized $^3$He target for nuclear physics experiments.

Download