Do you want to publish a course? Click here

Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902

154   0   0.0 ( 0 )
 Added by Fabio D. Barazza
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the population of bright early-type dwarf galaxies in the multiple-cluster system Abell 901/902. We use data from the STAGES survey and COMBO-17 to investigate the relation between the color and structural properties of the dwarfs and their location in the cluster. The definition of the dwarf sample is based on the central surface brightness and includes galaxies in the luminosity range -16 >= M_B >~-19 mag. Using a fit to the color magnitude relation of the dwarfs, our sample is divided into a red and blue subsample. We find a color-density relation in the projected radial distribution of the dwarf sample: at the same luminosity dwarfs with redder colors are located closer to the cluster centers than their bluer counterparts. Furthermore, the redder dwarfs are on average more compact and rounder than the bluer dwarfs. These findings are consistent with theoretical expectations assuming that bright early-type dwarfs are the remnants of transformed late-type disk galaxies involving processes such as ram pressure stripping and galaxy harassment. This indicates that a considerable fraction of dwarf elliptical galaxies in clusters are the results of transformation processes related to interactions with their host cluster.



rate research

Read More

130 - I. Marinova 2008
In dense clusters, higher densities at early epochs as well as physical processes, such as ram pressure stripping and tidal interactions become important, and can have direct consequences for the evolution of bars and their host disks. To study bars and disks as a function of environment, we are using the STAGES ACS HST survey of the Abell 901/902 supercluster (z~0.165), along with earlier field studies based the SDSS and the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS). We explore the limitations of traditional methods for characterizing the bar fraction, and in particular highlight uncertainties in disk galaxy selection in cluster environments. We present an alternative approach for exploring the proportion of bars, and investigate the properties of bars as a function of host galaxy color, Sersic index, stellar mass, star formation rate (SFR), specific SFR, and morphology.
We derive rotation curves from optical emission lines of 182 disk galaxies (96 in the cluster and 86 in the field) in the region of Abell 901/902 located at $zsim 0.165$. We focus on the analysis of B-band and stellar-mass Tully-Fisher relations. We examine possible environmental dependencies and differences between normal spirals and dusty red galaxies, i.e. disk galaxies that have red colors due to relatively low star formation rates. We find no significant differences between the best-fit TF slope of cluster and field galaxies. At fixed slope, the field population with high-quality rotation curves (57 objects) is brighter by $Delta M_{B}=-0fm42pm0fm15$ than the cluster population (55 objects). We show that this slight difference is at least in part an environmental effect. The scatter of the cluster TFR increases for galaxies closer to the core region, also indicating an environmental effect. Interestingly, dusty red galaxies become fainter towards the core at given rotation velocity (i.e. total mass). This indicates that the star formation in these galaxies is in the process of being quenched. The luminosities of normal spiral galaxies are slightly higher at fixed rotation velocity for smaller cluster-centric radii. Probably these galaxies are gas-rich (compared to the dusty red population) and the onset of ram-pressure stripping increases their star-formation rates. The results from the TF analysis are consistent with and complement our previous findings. Dusty red galaxies might be an intermediate stage in the transformation of infalling field spiral galaxies into cluster S0s, and this might explain the well-known increase of the S0 fraction in galaxy clusters with cosmic time.
122 - Benjamin Bosch 2012
We present spectroscopic observations of 182 disk galaxies (96 in the cluster and 86 in the field environment) in the region of the Abell 901/902 multiple cluster system, which is located at a redshift of $zsim 0.165$. The presence of substructures and non-Gaussian redshift distributions indicate that the cluster system is dynamically young and not in a virialized state. We find evidence for two important galaxy populations. textit{Morphologically distorted galaxies} are probably subject to increased tidal interactions. They show pronounced rotation curve asymmetries at intermediate cluster-centric radii and low rest-frame peculiar velocities. textit{Morphologically undistorted galaxies} show the strongest rotation curve asymmetries at high rest-frame velocities and low cluster-centric radii. Supposedly, this group is strongly affected by ram-pressure stripping due to interaction with the intra-cluster medium. Among the morphologically undistorted galaxies, dusty red galaxies have particularly strong rotation curve asymmetries, suggesting ram pressure is an important factor in these galaxies. Furthermore, dusty red galaxies on average have a bulge-to-total ratio higher by a factor of two than cluster blue cloud and field galaxies. The fraction of kinematically distorted galaxies is 75% higher in the cluster than in the field environment. This difference mainly stems from morphological undistorted galaxies, indicating a cluster-specific interaction process that only affects the gas kinematics but not the stellar morphology. Also the ratio between gas and stellar scale length is reduced for cluster galaxies compared to the field sample. Both findings could be best explained by ram-pressure effects.
Early-type dwarf galaxies, once believed to be simple systems, have recently been shown to exhibit an intriguing diversity in structure and stellar content. To analyze this further, we started the SMAKCED project, and obtained deep H-band images for 101 early-type dwarf galaxies in the Virgo cluster in a brightness range of -19 leq M_r leq -16 mag, typically reaching a signal-to-noise of 1 per pixel of sim0.25 at surface brightnesses sim22.5 mag/arcsec^2 in the H-band. Here we present the first results of decomposing their two-dimensional light distributions. This is the first study dedicated to early-type dwarf galaxies using the two-dimensional multi-component decomposition approach, which has been proven to be important for giant galaxies. Armed with this new technique, we find more structural components than previous studies: only a quarter of the galaxies fall into the simplest group, namely those represented by a single Sersic function, optionally with a nucleus. Furthermore, we find a bar fraction of 18%. We detect also a similar fraction of lenses which appear as shallow structures with sharp outer edges. Galaxies with bars and lenses are found to be more concentrated towards the Virgo galaxy center than the other sample galaxies.
217 - I. Marinova 2009
We present a study of bar and host disk evolution in a dense cluster environment, based on a sample of ~800 bright (MV <= -18) galaxies in the Abell 901/2 supercluster at z~0.165. We use HST ACS F606W imaging from the STAGES survey, and data from Spitzer, XMM-Newton, and COMBO-17. We identify and characterize bars through ellipse-fitting, and other morphological features through visual classification. (1) We explore three commonly used methods for selecting disk galaxies. We find 625, 485, and 353 disk galaxies, respectively, via visual classification, a single component Sersic cut (n <= 2.5), and a blue-cloud cut. In cluster environments, the latter two methods miss 31% and 51%, respectively, of visually-identified disks. (2) For moderately inclined disks, the three methods of disk selection yield a similar global optical bar fraction (f_bar-opt) of 34% +10%/-3%, 31% +10%/-3%, and 30% +10%/-3%, respectively. (3) f_bar-opt rises in brighter galaxies and those which appear to have no significant bulge component. Within a given absolute magnitude bin, f_bar-opt is higher in visually-selected disk galaxies that have no bulge as opposed to those with bulges. For a given morphological class, f_bar-opt rises at higher luminosities. (4) For bright early-types, as well as faint late-type systems with no evident bulge, the optical bar fraction in the Abell 901/2 clusters is comparable within a factor of 1.1 to 1.4 to that of field galaxies at lower redshifts (5) Between the core and the virial radius of the cluster at intermediate environmental densities, the optical bar fraction does not appear to depend strongly on the local environment density and varies at most by a factor of ~1.3. We discuss the implications of our results for the evolution of bars and disks in dense environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا