Convexity of effective Lagrangian in nonlinear electrodynamics as derived from causality


Abstract in English

In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed unity, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we find restrictions on the behavior of massive and massless dispersion curves and establish the convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed resulting in complex energy tachyons and super-luminal ghosts that signal the instability of the magnetized vacuum. General grounds for kinematical selection rules in the process of photon splitting/merging are discussed.

Download