The simplicial volume of hyperbolic manifolds with geodesic boundary


Abstract in English

Let n>2 and let M be an orientable complete finite volume hyperbolic n-manifold with (possibly empty) geodesic boundary having Riemannian volume vol(M) and simplicial volume ||M||. A celebrated result by Gromov and Thurston states that if M has empty boundary then the ratio between vol(M) and ||M|| is equal to v_n, where v_n is the volume of the regular ideal geodesic n-simplex in hyperbolic n-space. On the contrary, Jungreis and Kuessner proved that if the boundary of M is non-empty, then such a ratio is strictly less than v_n. We prove here that for every a>0 there exists k>0 (only depending on a and n) such that if the ratio between the volume of the boundary of M and the volume of M is less than k, then the ratio between vol(M) and ||M|| is greater than v_n-a. As a consequence we show that for every a>0 there exists a compact orientable hyperbolic n-manifold M with non-empty geodesic boundary such that the ratio between vol(M) and ||M|| is greater than v_n-a. Our argument also works in the case of empty boundary, thus providing a somewhat new proof of the proportionality principle for non-compact finite-volume hyperbolic n-manifolds without boundary.

Download