Do you want to publish a course? Click here

Acceleration and radiation of ultra-high energy protons in galaxy clusters

159   0   0.0 ( 0 )
 Added by Giulia Vannoni
 Publication date 2009
  fields Physics
and research's language is English
 Authors G. Vannoni




Ask ChatGPT about the research

Clusters of galaxies are believed to be capable to accelerate protons at accretion shocks to energies exceeding 10^18 eV. At these energies, the losses caused by interactions of cosmic rays with photons of the Cosmic Microwave Background Radiation (CMBR) become effective and determine the maximum energy of protons and the shape of the energy spectrum in the cutoff region. The aim of this work is the study of the formation of the energy spectrum of accelerated protons at accretion shocks of galaxy clusters and of the characteristics of their broad band emission. The proton energy distribution is calculated self-consistently via a time-dependent numerical treatment of the shock acceleration process which takes into account the proton energy losses due to interactions with the CMBR. We calculate the energy distribution of accelerated protons, as well as the flux of broad-band emission produced by secondary electrons and positrons via synchrotron and inverse Compton scattering processes. We find that the downstream and upstream regions contribute almost at the same level to the emission. For the typical parameters characterising galaxy clusters, the synchrotron and IC peaks in the spectral energy distributions appear at comparable flux levels. For an efficient acceleration, the expected emission components in the X-ray and gamma-ray band are close to the detection threshold of current generation instruments, and will be possibly detected with the future generation of detectors.



rate research

Read More

In this paper, we investigate the acceleration in relativistic jets of high-energy proton preaccelerated in the magnetosphere of a supermassive black hole. The proton reaches maximum energy when passing the total potential difference of $U$ between the jet axis and its periphery. This voltage is created by a rotating black hole and transmitted along magnetic field lines into the jet. It is shown that the trajectories of proton in the jet are divided into three groups: untrapped, trapped and not accelerated. Untrapped particles are not kept by poloidal and toroidal magnetic fields inside the jet, so they escape out the jet and their energy is equal to the maximum value, $eU$. Trapped protons are moving along the jet with oscillations in the radial direction. Their energy varies around the value of $0.74 eU$. In a strong magnetic field protons preaccelerated in the magnetosphere are pressed to the jet axis and practically are not accelerated in the jet. The work defines acceleration regimes for a range of the most well-known AGN objects with relativistic jets and for the microquasar SS433.
137 - V. Berezinsky 2009
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discovery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
209 - Pasquale Blasi 2012
The wealth of data collected in the last few years thanks to the Pierre Auger Observatory and recently to the Telescope Array made the problem of the origin of ultra high energy cosmic rays a genuinely experimental/observational one. The apparently contradictory results provided by these experiments in terms of spectrum, chemical composition and anisotropies do not allow to reach any final conclusions as yet. Here I will discuss some of the theoretical challenges imposed by these data: in particular I will discuss some issues related to the transition from Galactic to extragalactic cosmic rays and how the different models confront our understanding of Galactic cosmic rays in terms of supernova remnants paradigm. I will also discuss the status of theories aiming at describing acceleration of cosmic rays to the highest energies in relativistic shocks and unipolar inductors.
Observations of the FR I radio galaxy Centaurus A in radio, X-ray and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~ 1 x 10^43 erg s^-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~ 3 x 10^21 g s^-1 of matter via external entrainment from hot gas and ~ 7 x 10^22 g s^-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 x 10^-12 dyn cm^-2, from which we deduce a lower limit to the temperature of ~ 1.6 x 10^8 K. Using dynamical and buoyancy arguments, we infer ~ 440-645 Myr and ~ 560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same very hot temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.
Galactic cosmic rays reach energies of at least a few Peta-electronvolts (1 PeV =$10^mathbf{15}$ electron volts). This implies our Galaxy contains PeV accelerators (PeVatrons), but all proposed models of Galactic cosmic-ray accelerators encounter non-trivial difficulties at exactly these energies. Tens of Galactic accelerators capable of accelerating particle to tens of TeV (1 TeV =$10^mathbf{12}$ electron volts) energies were inferred from recent gamma-ray observations. None of the currently known accelerators, however, not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays, have shown the characteristic tracers of PeV particles: power-law spectra of gamma rays extending without a cutoff or a spectral break to tens of TeV. Here we report deep gamma-ray observations with arcminute angular resolution of the Galactic Centre regions, which show the expected tracer of the presence of PeV particles within the central 10~parsec of the Galaxy. We argue that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts and an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last $gtrsim 10^{6-7}$ years, and therefore should be considered as a viable alternative to supernova remnants as a source of PeV Galactic cosmic rays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا