Do you want to publish a course? Click here

Chemical depletion in the Large Magellanic Cloud: RV Tauri stars and the photospheric feedback from their dusty discs

157   0   0.0 ( 0 )
 Added by Clio Gielen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: By studying the photospheric abundances of 4 RV Tauri stars in the LMC, we test whether the depletion pattern of refractory elements, seen in similar Galactic sources, is also common for extragalactic sources. Since this depletion process probably only occurs through interaction with a stable disc, we investigate the circumstellar environment of these sources. Methods: A detailed photospheric abundance study was performed using high-resolution UVES optical spectra. To study the circumstellar environment we use photometric data to construct the spectral energy distributions of the stars, and determine the geometry of the circumstellar environment, whereas low-resolution Spitzer-IRS infrared spectra are used to trace its mineralogy. Results: Our results show that, also in the LMC, the photospheres of RV Tauri stars are commonly affected by the depletion process, although it can differ significantly in strength from source to source. From our detailed disc modelling and mineralogy study, we find that this process, as in the Galaxy, appears closely related to the presence of a stable Keplerian disc. The newly studied extragalactic objects have similar observational characteristics as Galactic post-AGB binaries surrounded by a dusty disc, and are therefore also believed to be part of a binary system. One source shows a very small infrared excess, atypical for a disc source, but still has evidence for depletion. We speculate this could point to the presence of a very evolved disc, similar to debris discs seen around young stellar objects.



rate research

Read More

We present the most extensive and detailed reddening maps of the Magellanic Clouds (MCs) derived from the color properties of Red Clump (RC) stars. The analysis is based on the deep photometric maps from the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV), covering approximately 670 deg2 of the sky in the Magellanic System region. The resulting maps provide reddening information for 180 deg2 in the Large Magellanic Cloud (LMC) and 75 deg2 in the Small Magellanic Cloud (SMC), with a resolution of 1.7x1.7 arcmin in the central parts of the MCs, decreasing to approximately 27x27 arcmin in the outskirts. The mean reddening is E(V-I) = 0.100 +- 0.043 mag in the LMC and E(V-I) = 0.047 +- 0.025 mag in the SMC. We refine methods of calculating the RC color to obtain the highest possible accuracy of reddening maps based on RC stars. Using spectroscopy of red giants, we find the metallicity gradient in both MCs, which causes a slight decrease of the intrinsic RC color with distance from the galaxy center of ~0.002 mag/deg in the LMC and between 0.003 and 0.009 mag/deg in the SMC. The central values of the intrinsic RC color are 0.886 and 0.877 mag in the LMC and SMC, respectively. The reddening map of the MCs is available on-line both in the downloadable form and as an interactive interface.
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
We present a narrow-band imaging survey of the Large Magellanic Cloud, designed to isolate the C II $lambdalambda$7231, 7236 emission lines in objects as faint as $m_{lambda7400}sim18$. The work is motivated by the recent serendipitous discovery in the LMC of the first confirmed extragalactic [WC11] star, whose spectrum is dominated by C II emission, and the realization that the number of such objects is currently largely unconstrained. The survey, which imaged $sim$50$~$deg$^2$ using on-band and off-band filters, will significantly increase the total census of these rare stars. In addition, each new LMC [WC] star has a known luminosity, a quantity quite uncertain in the Galactic sample. Multiple known C II emitters were easily recovered, validating the survey design. We find 38 new C II emission candidates; spectroscopy of the complete sample will be needed to ascertain their nature. In a preliminary spectroscopic reconnaissance, we observed three candidates, finding C II emission in each. One is a new [WC11]. Another shows both the narrow C II emission lines characteristic of a [WC11], but also broad emission of C IV, O V, and He II characteristic of a much hotter [WC4] star; we speculate that this is a binary [WC]. The third object shows weak C II emission, but the spectrum is dominated by a dense thicket of strong absorption lines, including numerous O II transitions. We conclude it is likely an unusual hot, hydrogen-poor post-AGB star, possibly in transition from [WC] to white dwarf. Even lacking a complete spectroscopic program, we can infer that late [WC] stars do not dominate the central stars of LMC planetary nebulae, and that the detected C II emitters are largely of an old population.
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-Red Giant Branch (post-RGB) stars, discovered previously in our SMC survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 Lsun), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show SED properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.
We present a catalog of relative proper motions for 368,787 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC), based on a dedicated two-epoch survey with the Hubble Space Telescope (HST) and supplemented with proper motions from our pilot archival study. We demonstrate that a relatively short epoch difference of 3 years is sufficient to reach a $sim$0.1 mas yr$^{-1}$ level of precision or better. A number of stars have relative proper motions exceeding a 3-sigma error threshold, representing a mixture of Milky Way denizens and 17 potential LMC runaway stars. Based upon 183 VFTS OB-stars with the best proper motions, we conclude that none of them move faster than $sim$0.3 mas yr$^{-1}$ in each coordinate -- equivalent to $sim$70 km s$^{-1}$. Among the remaining 351 VFTS stars with less accurate proper motions, only one candidate OB runaway can be identified. We rule out any OB star in our sample moving at a tangential velocity exceeding $sim$120 km s$^{-1}$. The most significant result of this study is finding 10 stars over wide range of masses, which appear to be ejected from the massive star cluster R136 in the tangential plane to angular distances from $35^{primeprime}$ out to $407^{primeprime}$, equivalent to 8-98 pc. The tangential velocities of these runaways appear to be correlated with apparent magnitude, indicating a possible dependence on the stellar mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا