Do you want to publish a course? Click here

Discovery of a 552 Hz burst oscillation in the low-mass X-ray binary EXO 0748-676

199   0   0.0 ( 0 )
 Added by Duncan K. Galloway
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of pulsations at 552 Hz in the rising phase of two type-I (thermonuclear) X-ray bursts observed from the accreting neutron star EXO 0748-676 in 2007 January and December, by the Rossi X-ray Timing Explorer. The fractional amplitude was 15% (rms). The dynamic power density spectrum for each burst revealed an increase in frequency of approx. 1-2 Hz while the oscillation was present. The frequency drift, the high significance of the detections and the almost identical signal frequencies measured in two bursts separated by 11 months, confirms this signal as a burst oscillation similar to those found in 13 other sources to date. We thus conclude that the spin frequency in EXO 0748-676 is within a few Hz of 552 Hz, rather than 45 Hz as was suggested from an earlier signal detection by Villarreal & Strohmayer (2004). Consequently, Doppler broadening must significantly affect spectral features arising from the neutron star surface, so that the narrow absorption features previously reported from an XMM-Newton spectrum could not have arisen there. The origin of both the previously reported 45 Hz oscillation and the X-ray absorption lines is now uncertain.



rate research

Read More

59 - L. Boirin 2007
[Abridged] Type-I X-ray bursts are thermonuclear flashes that take place on the surface of accreting neutron stars. The wait time between consecutive bursts is set by the time required to accumulate the fuel needed to trigger a new burst; this is at least one hour. Sometimes secondary bursts are observed, approximately 10 min after the main burst. These short wait-time bursts are not yet understood. We observed the low-mass X-ray binary and X-ray burster EXO 0748-676 with XMM-Newton for 158 h, during 7 uninterrupted observations lasting up to 30 h each. We detect 76 X-ray bursts. Most remarkably, 15 of these bursts occur in burst triplets, with wait times of 12 min between the three components of the triplet. We also detect 14 doublets with similar wait times between the two components of the doublet. The characteristics of the bursts indicate that possibly all bursts in this system are hydrogen-ignited, in contrast with most other frequent X-ray bursters in which bursts are helium-ignited, but consistent with the low mass accretion rate in EXO 0748-676. Possibly the hydrogen ignition is the determining factor for the occurrence of short wait-time bursts.
182 - Michael T. Wolff 2007
We report evidence of magnetic activity associated with the secondary star in the EXO 0748-676 low mass X-ray binary system. An analysis of a sequence of five consecutive X-ray eclipses observed during December 2003 with the RXTE satellite brings out a feature occurring during ingress we interpret as the X-ray photoelectric absorption shadow, as seen by an observer at Earth, of a plasma structure suspended above the surface of the secondary star. The light curve feature consists of an initial drop in count rate to near zero (the absorption shadow) with a very short rebound to a significant fraction of the pre-ingress count rate and then a final plunge to totality over a total time scale of ~25 s. The ingress feature persists for at least 5 consecutive orbital periods (a total of ~19 hr), and possibly up to 5 days in our data. Our data also show significant post-egress dipping during this eclipse sequence, unusual for this source, indicating possible secondary star mass ejection during this episode.
We present VLT intermediate resolution spectroscopy of UY Vol, the optical counterpart of the LMXB X-ray burster EXO 0748-676. By using Doppler tomography we detect narrow components within the broad He II 4542 A, 4686 A and 5412 A emission lines. The phase, velocity and narrowness of these lines are consistent with their arising from the irradiated hemisphere of the donor star, as has been observed in a number of LMXBs. Under this assumption we provide the first dynamical constraints on the stellar masses in this system. In particular, we measure K_2>K_em = 300 +/- 10 km/s. Using this value we derive 1 M_sun < M_1 < 2.4 M_sun and 0.11 < q < 0.28. We find M_1 > 1.5 M_sun for the case of a main sequence companion star. Our results are consistent with the presence of a massive neutron star as has been suggested by Ozel (2006), although we cannot discard the canonical value of ~1.4 M_sun.
The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been observed at several occasions by XMM-Newton during the initial calibration and performance verification (CAL/PV) phase. We present here the results obtained from observations with the EPIC cameras. Apart from several type-I X-ray bursts, the source shows a high degree of variability with the presence of soft flares. The wide energy coverage and high sensitivity of XMM-Newton allows for the first time a detailed description of the spectral variability. The source is found to be the superposition of a central (~2 10^8 cm) Comptonized emission, most probably a corona surrounding the inner edge of an accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a typical temperature of ~0.6 keV with an indication of non-solar abundances. Most of the variations of the source can be accounted for by a variable absorption affecting only the central comptonized component and reaching up to NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found compatible with an irradiated atmosphere of an accretion disc which intercepts the central emission due to the system high inclination.
We have observed an unusually strong X-ray burst as a part of our regular eclipse timing observations of the low mass binary system EXO0748-676. The burst peak flux was 5.2x10^-8 ergs cm^-2 s^-1, approximately five times the normal peak X-ray burst flux observed from this source by RXTE. Spectral fits to the data strongly suggest that photospheric radius expansion occurred during the burst. In this Letter we examine the properties of this X-ray burst, which is the first example of a radius expansion burst from EXO0748-676 observed by RXTE. We find no evidence for coherent burst oscillations. Assuming that the peak burst luminosity is the Eddington luminosity for a 1.4 solar mass neutron star we derive a distance to EXO0748-676 of 7.7 kpc for a helium-dominated burst photosphere and 5.9 kpc for a hydrogen-dominated burst photosphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا