Do you want to publish a course? Click here

Effect of nanosize BaZrO3 inclusions on vortex parameters in YBaCuO

120   0   0.0 ( 0 )
 Added by Enrico Silva
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the field dependence of the microwave complex resistivity data in YBa$_2$Cu$_3$O$_{7-x}$/BaZrO$_3$ films grown by PLD at various BaZrO$_3$ content. The data, analyzed within a recently developed general framework for the mixed-state microwave response of superconductors, yield the field dependence of the fluxon parameters such as the vortex viscosity and the pinning constant. We find that pinning undergoes a change of regime when the BaZrO$_3$ content in the target increases from 2.5 mol.% to 5 mol.%. Simultaneously, the vortex viscosity becomes an increasing function of the applied magnetic field. We propose a scenario in which flux lines are pinned as bundles, and a crossover from dilute point pins to dense c-axis correlated defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data are inconsistent with vortices occupying mainly the BaZrO$_3$ sites at low fields, and suggest instead that vortices occupy both BaZrO$_3$ sites and interstitials in the YBa$_2$Cu$_3$O$_{7-x}$ matrix, even at low fields.



rate research

Read More

Measurements of anisotropic transport properties (dc and high-frequency regime) of driven vortex matter in YBa$_2$Cu$_3$O$_{7-x}$ with elongated strong-pinning sites (c-axis aligned, self-assembled BaZrO$_3$ nanorods) are used to demonstrate that the effective-mass angular scaling takes place only in intrinsic physical quantities (flux-flow resistivity), and not in pinning-related Labusch parameter and critical currents. Comparison of the dynamics at different time scales shows evidence for a transition of the vortex matter toward a Mott phase, driven by the presence of nanorods. The strong pinning in dc arises partially from a dynamic effect.
206 - N. Pompeo , V. Galluzzi , R. Rogai 2007
We probe the short-range pinning properties with the application of microwave currents at very high driving frequencies (47.7 GHz) on YBa$_2$Cu$_3$O$_{7-delta}$ films with and without sub-micrometer BaZrO$_3$ inclusions. We explore the temperature and field ranges 60 K$<T<T_c$ and 0$<mu_0H<$0.8 T, with the field applied along the c-axis. The magnetic field induces a much smaller increase of the microwave resistivity, $Delta rho_1(H)+mathrm{i}Delta rho_2(H)$, in YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ with respect to pure YBa$_2$Cu$_3$O$_{7-delta}$. $Delta rho_1(H)$ is slightly superlinear in pure YBa$_2$Cu$_3$O$_{7-delta}$ (suggesting a possible contribution of thermal activation), but linear or sublinear in YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ (suggesting a possible suppression of thermal activation as a consequence of BaZrO$_3$ inclusions). These features persist up to close to $T_c$. We discuss our data in terms of the ratio $r=Delta X_s(H)/Delta R_s(H)$ in the framework of the models for the microwave surface impedance in the mixed state. Large $r$ are found in YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$, with little field dependence. By contrast, smaller values and stronger field dependences are found in pure YBa$_2$Cu$_3$O$_{7-delta}$. We discuss the different field dependence of the pinning constant.
Josephson junctions were photogenerated in underdoped thin films of the YBa$_2$Cu$_3$O$_{6+x}$ family using a near-field scanning optical microscope. The observation of the Josephson effect for separations as large as 100 nm between two wires indicates the existence of an anomalously large proximity effect and show that the underdoped insulating material in the gap of the junction is readily perturbed into the superconducting state. The critical current of the junctions was found to be consistent with the conventional Josephson relationship. This result constrains the applicability of SO(5) theory to explain the phase diagram of high critical temperature superconductors.
Superconductors can support large dissipation-free electrical currents only if vortex lines are effectively immobilized by material defects. Macroscopic critical currents depend on elemental interactions of vortices with individual pinning centers. Pinning mechanisms are nontrivial for large-size defects such as self-assembled nanoparticles. We investigate the problem of a vortex system interacting with an isolated defect using time-dependent Ginzburg-Landau simulations. In particular, we study the instability-limited depinning process and extract the dependence of the pin-breaking force on inclusion size and anisotropy for an emph{isolated vortex line}. In the case of a emph{vortex lattice} interacting with a large isolated defect, we find a series of first-order phase transitions at well-defined magnetic fields, when the number of vortex lines occupying the inclusion changes. The pin-breaking force has sharp local minima at those fields. As a consequence, in the case of isolated identical large-size defects, the field dependence of the critical current is composed of a series of peaks located in between the occupation-number transition points.
The influence of Twin Boundaries (TB) on the Flux Line Lattice(FLL) structure was investigated by Small Angle Neutron Scattering (SANS). YBaCuO single crystals possessing different TB densities were studied. The SANS experiments show that the TB strongly modify the structure of the FLL. The flux lines meander as soon as the magnetic field makes an angle with the TB direction. According to the value of this angle but also to the ratio of the flux lines density over the TB density, one observes that the FLL exhibits two different unit cells in the plane perpendicular to the magnetic field. One is the classical hexagonal and anisotropic cell while the other is affected by an additional deformation induced by the TB. We discuss a possible relation between this deformation and the increase of the critical current usually observed in heavily twinned samples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا