Anisotropic In-Plane Strain and Transport in Epitaxial Nd(0.2)Sr(0.8)MnO(3) Thin Films


Abstract in English

The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd(0.2)Sr(0.8)MnO(3) are reported for thicknesses 10 nm <= t <= 150 nm. Films were grown with both tensile and compressive strain on various substrates. It is found that the elongated crystallographic c-axes of the films remain fully strained to the substrates for all thicknesses in both strain states. Relaxation of the a and b axes is observed for t>= 65 nm with films grown under tensile strain developing uniaxial crack arrays (running along the c axis) due to a highly anisotropic thermal expansion. For the latter films, the room-temperature in-plane electrical resistivity anisotropy, rho_b/rho_c, increases approximately exponentially with increasing film thickness to values of ~1000 in the thickest films studied. Films under tension have their Neel temperatures enhanced by ~25 K independent of thickness, consistent with an enhancement of ferromagnetic exchange along their expanded c axes.

Download